Unité PCPM, Université Catholique de Louvain, 1 Croix du Sud, B-1348, Louvain-la-Neuve, Belgium.
Anal Chem. 2009 Aug 15;81(16):6676-86. doi: 10.1021/ac900746x.
The present theoretical study explores the interaction of various energetic molecular projectiles and clusters with a model polymeric surface, with direct implications for surface analysis by mass spectrometry. The projectile sizes (up to 23 kDa) are intermediate between the polyatomic ions (SF(5), C(60)) used in secondary ion mass spectrometry and the large organic microdroplets generated, for example, in desorption electrospray ionization. The target is a model of amorphous polyethylene, already used in a previous study [Delcorte, A.; Garrison, B. J. J. Phys. Chem. C 2007, 111, 15312]. The chosen method relies on classical molecular dynamics (MD) simulations, using a coarse-grained description of polymeric samples for high energy or long time calculations (20-50 ps) and a full atomistic description for low energy or short time calculations (<1 ps). Two regions of sputtering or desorption are observed depending on the projectile energy per nucleon (i.e., effectively the velocity). The transition, occurring around 1 eV/nucleon, is identified by a change of slope in the curve of the sputtering yield per nucleon vs energy per nucleon. Beyond 1 eV/nucleon, the sputtering yield depends only on the total projectile energy and not on the projectile nuclearity. Below 1 eV/nucleon, i.e., around the sputtering threshold for small projectiles, yields are influenced by both the projectile energy and nuclearity. Deposition of intact molecular clusters is also observed at the lowest energies per nucleon. The transition in the sputtering curve is connected to a change of energy deposition mechanisms, from atomistic and mesoscopic processes to hydrodynamic flow. It also corresponds to a change in terms of fragmentation. Below 1 eV/nucleon, the projectiles are not able to induce bond scissions in the sample. This region of molecular emission with minimal fragmentation offers new analytical perspectives, out of reach of smaller molecular clusters such as fullerenes.
本理论研究探讨了各种高能分子射弹和团簇与模型聚合物表面的相互作用,这对通过质谱进行表面分析具有直接意义。射弹尺寸(最大 23 kDa)处于二次离子质谱中使用的多原子离子(SF(5)、C(60))和例如在解吸电喷雾电离中产生的大有机微液滴之间。目标是无定形聚乙烯的模型,该模型已在前一项研究中使用 [Delcorte, A.; Garrison, B. J. J. Phys. Chem. C 2007, 111, 15312]。所选择的方法依赖于经典分子动力学 (MD) 模拟,对于高能或长时间计算(20-50 ps)使用聚合物样品的粗粒度描述,对于低能或短时间计算(<1 ps)使用全原子描述。根据射弹每核子的能量(即有效速度),观察到两种溅射或解吸区域。在大约 1 eV/核子的能量处,通过溅射产额与每核子能量曲线的斜率变化来识别转变。超过 1 eV/核子后,溅射产额仅取决于总射弹能量,而与射弹核数无关。低于 1 eV/核子,即在小射弹的溅射阈值附近,产额受到射弹能量和核数的共同影响。在最低每核子能量下,也观察到完整分子团簇的沉积。溅射曲线中的转变与能量沉积机制的变化有关,从原子和介观过程到流体动力学流动。它还对应于碎片的变化。低于 1 eV/核子,射弹无法在样品中引起键断裂。与更小的分子团簇(如富勒烯)相比,这个具有最小碎片的分子发射区域提供了新的分析前景。