Department of Materials Science, University of Southern California, Los Angeles, California 90089, USA.
Nano Lett. 2010 Apr 14;10(4):1314-8. doi: 10.1021/nl9041214.
Irradiating gold nanoparticles at their plasmon resonance frequency creates immense plasmonic charge and high temperatures, which can be used to drive catalytic reactions. By integrating strongly plasmonic nanoparticles with strongly catalytic metal oxides, significant enhancements in the catalytic activity can be achieved. Here, we study the plasmonically driven catalytic conversion of CO to CO(2) by irradiating Au nanoparticle/Fe(2)O(3) composites. The reaction rate of this composite greatly exceeds that of the Au nanoparticles or Fe(2)O(3) alone, indicating that this reaction is not driven solely by the thermal (plasmonic) heating of the gold nanoparticles but relies intimately on the interaction of these two materials. A comparison of the plasmonically driven catalytic reaction rate with that obtained under uniform heating shows an enhancement of at least 2 orders of magnitude.
在等离子体共振频率下辐照金纳米粒子会产生巨大的等离子体电荷和高温,可用于驱动催化反应。通过将强等离子体纳米粒子与强催化金属氧化物集成,可以显著提高催化活性。在这里,我们研究了通过辐照 Au 纳米粒子/Fe2O3 复合材料将 CO 光催化转化为 CO2。该复合材料的反应速率大大超过了 Au 纳米粒子或 Fe2O3 单独存在的反应速率,这表明该反应不仅仅是由金纳米粒子的热(等离子体)加热驱动的,而是依赖于这两种材料的密切相互作用。将等离子体驱动的催化反应速率与均匀加热下获得的反应速率进行比较,发现至少增强了 2 个数量级。