Savova Guergana, Bethard Steven, Styler Will, Martin James, Palmer Martha, Masanz James, Ward Wayne
Mayo Clinic, Rochester, MN, USA.
AMIA Annu Symp Proc. 2009 Nov 14;2009:568-72.
Disease progression and understanding relies on temporal concepts. Discovery of automated temporal relations and timelines from the clinical narrative allows for mining large data sets of clinical text to uncover patterns at the disease and patient level. Our overall goal is the complex task of building a system for automated temporal relation discovery. As a first step, we evaluate enabling methods from the general natural language processing domain - deep parsing and semantic role labeling in predicate-argument structures - to explore their portability to the clinical domain. As a second step, we develop an annotation schema for temporal relations based on TimeML. In this paper we report results and findings from these first steps. Our next efforts will scale up the data collection to develop domain-specific modules for the enabling technologies within Mayo's open-source clinical Text Analysis and Knowledge Extraction System.
疾病进展及相关理解依赖于时间概念。从临床叙述中发现自动的时间关系和时间线,有助于挖掘大量临床文本数据集,以揭示疾病层面和患者层面的模式。我们的总体目标是构建一个用于自动时间关系发现的系统,这是一项复杂的任务。作为第一步,我们评估来自通用自然语言处理领域的支持方法——深度句法分析和谓词-论元结构中的语义角色标注,以探索它们在临床领域的适用性。作为第二步,我们基于TimeML开发了一个时间关系标注模式。在本文中,我们报告了这些第一步的结果和发现。我们接下来的工作将扩大数据收集规模,以便在梅奥诊所的开源临床文本分析与知识提取系统中为这些支持技术开发特定领域的模块。