Suppr超能文献

视网膜锥体细胞双极细胞的复杂性。

Complexity of retinal cone bipolar cells.

机构信息

CNR Neuroscience Institute, Area della Ricerca CNR, Via Giuseppe Moruzzi 1, 56100 Pisa, Italy.

出版信息

Prog Retin Eye Res. 2010 Jul;29(4):272-83. doi: 10.1016/j.preteyeres.2010.03.005. Epub 2010 Mar 31.

Abstract

An open issue of retinal organization and function is the comprehension of the different tasks specifically performed by bipolar cells, the neurons that collect information from photoreceptors in the outer retina and convey the signal to the inner plexiform layer. Particularly interesting is to understand the unique contribution to the visual signal brought by cone bipolar cells, neurons typical of the mammalian retina and especially dedicated to receive synaptic input from cones. In all the species studied so far, it has been shown that cone bipolar cells occur in about ten different types, which form distinct clusters identified with a panel of both classical and modern genetic methods. Reviewed here is current literature illustrating the occurrence of morphological, molecular and architectural features that confer to each bipolar cell type exclusive fingerprints, ultimately predicting the emergence of similarly unique, albeit still partially unraveled, functional properties. Thus, differences among cone bipolar cells lay the ground for the genesis in the outer retina of parallel channels, which convey to the inner retina separate information, among others, about contrast, chromatic features and temporal properties of the visual signal.

摘要

视网膜组织和功能的一个悬而未决的问题是理解双极细胞所执行的不同任务,双极细胞是从外视网膜中的光感受器收集信息并将信号传递到内丛状层的神经元。特别有趣的是要了解锥体细胞双极细胞对视觉信号的独特贡献,锥体细胞双极细胞是哺乳动物视网膜中的典型神经元,专门用于接收来自锥体的突触输入。在迄今为止研究的所有物种中,已经表明锥体细胞双极细胞存在大约十种不同的类型,这些类型形成了独特的簇,这些簇可以通过一系列经典和现代的遗传方法来识别。本文综述了目前的文献,这些文献说明了形态、分子和结构特征的发生,这些特征赋予了每种双极细胞类型独特的特征,最终预测了类似的独特但仍部分未阐明的功能特性的出现。因此,锥体细胞双极细胞之间的差异为外视网膜中平行通道的产生奠定了基础,这些通道向内部视网膜传递关于视觉信号对比度、颜色特征和时间特性等不同的信息。

相似文献

1
Complexity of retinal cone bipolar cells.
Prog Retin Eye Res. 2010 Jul;29(4):272-83. doi: 10.1016/j.preteyeres.2010.03.005. Epub 2010 Mar 31.
2
Retinal bipolar cells: elementary building blocks of vision.
Nat Rev Neurosci. 2014 Aug;15(8):507-19. doi: 10.1038/nrn3783.
3
Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision.
J Neurosci. 2017 Apr 26;37(17):4635-4644. doi: 10.1523/JNEUROSCI.2570-16.2017. Epub 2017 Apr 3.
4
Analysis of Parvocellular and Magnocellular Visual Pathways in Human Retina.
J Neurosci. 2020 Oct 14;40(42):8132-8148. doi: 10.1523/JNEUROSCI.1671-20.2020. Epub 2020 Oct 2.
5
Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina.
Nat Neurosci. 2006 May;9(5):669-75. doi: 10.1038/nn1686. Epub 2006 Apr 16.
6
Cone bipolar cells in the retina of the microbat Carollia perspicillata.
J Comp Neurol. 2015 Apr 15;523(6):963-81. doi: 10.1002/cne.23726. Epub 2015 Jan 30.
7
Chromatic bipolar cell pathways in the mouse retina.
J Neurosci. 2011 Apr 27;31(17):6504-17. doi: 10.1523/JNEUROSCI.0616-11.2011.
8
Roles of ON cone bipolar cell subtypes in temporal coding in the mouse retina.
J Neurosci. 2014 Jun 25;34(26):8761-71. doi: 10.1523/JNEUROSCI.3965-13.2014.
9
Molecular mechanism establishing the OFF pathway in vision.
Nat Commun. 2025 Apr 18;16(1):3708. doi: 10.1038/s41467-025-59046-0.

引用本文的文献

1
Retinal Neurochemistry.
Brain Sci. 2025 Jul 8;15(7):727. doi: 10.3390/brainsci15070727.
2
Photoreceptor degeneration induces homeostatic rewiring of rod bipolar cells.
Curr Biol. 2025 Jun 25. doi: 10.1016/j.cub.2025.05.057.
3
On the Cranial Nerves.
NeuroSci. 2023 Dec 28;5(1):8-38. doi: 10.3390/neurosci5010002. eCollection 2024 Mar.
5
WNT-inhibitory factor 1-mediated glycolysis protects photoreceptor cells in diabetic retinopathy.
J Transl Med. 2024 Mar 6;22(1):245. doi: 10.1186/s12967-024-05046-5.
6
7
The Role of Nrf2/sMAF Signalling in Retina Ageing and Retinal Diseases.
Biomedicines. 2023 May 23;11(6):1512. doi: 10.3390/biomedicines11061512.
8
Characterization of Retinal Development in 13-Lined Ground Squirrels.
Transl Vis Sci Technol. 2022 Nov 1;11(11):17. doi: 10.1167/tvst.11.11.17.
10
Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging.
Front Aging Neurosci. 2022 Feb 25;14:778404. doi: 10.3389/fnagi.2022.778404. eCollection 2022.

本文引用的文献

1
TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19174-8. doi: 10.1073/pnas.0908711106. Epub 2009 Oct 27.
2
ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina.
J Neurosci. 2009 Jul 15;29(28):8875-83. doi: 10.1523/JNEUROSCI.0912-09.2009.
3
Two R7 regulator of G-protein signaling proteins shape retinal bipolar cell signaling.
J Neurosci. 2009 Jun 17;29(24):7753-65. doi: 10.1523/JNEUROSCI.1794-09.2009.
4
A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells.
J Neurosci. 2009 May 13;29(19):6088-93. doi: 10.1523/JNEUROSCI.0132-09.2009.
6
Differential expression of three T-type calcium channels in retinal bipolar cells in rats.
Vis Neurosci. 2009 Mar-Apr;26(2):177-87. doi: 10.1017/S0952523809090026. Epub 2009 Mar 11.
7
Cone contacts, mosaics, and territories of bipolar cells in the mouse retina.
J Neurosci. 2009 Jan 7;29(1):106-17. doi: 10.1523/JNEUROSCI.4442-08.2009.
8
From retinal circuitry to eye diseases--in memory of Henk Spekreijse.
Vision Res. 2009 May;49(9):992-5. doi: 10.1016/j.visres.2008.10.001. Epub 2008 Nov 12.
9
Retinal ON bipolar cells express a new PCP2 splice variant that accelerates the light response.
J Neurosci. 2008 Sep 3;28(36):8873-84. doi: 10.1523/JNEUROSCI.0812-08.2008.
10
Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse.
J Comp Neurol. 2008 Oct 10;510(5):484-96. doi: 10.1002/cne.21807.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验