Sommerlade Linda, Eichler Michael, Jachan Michael, Henschel Kathrin, Timmer Jens, Schelter Björn
Department of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):051128. doi: 10.1103/PhysRevE.80.051128. Epub 2009 Nov 30.
The inference of causal interaction structures in multivariate systems enables a deeper understanding of the investigated network. Analyzing nonlinear systems using partial directed coherence requires high model orders of the underlying vector-autoregressive process. We present a method to overcome the drawbacks caused by the high model orders. We calculate the corresponding statistics and provide a significance level. The performance is illustrated by means of model systems and in an application to neurological data.
多变量系统中因果相互作用结构的推断有助于更深入地理解所研究的网络。使用偏相干分析非线性系统需要基础向量自回归过程具有较高的模型阶数。我们提出一种方法来克服高模型阶数带来的缺点。我们计算相应的统计量并给出显著性水平。通过模型系统以及在神经学数据应用中的实例来说明该方法的性能。