Cho Y S, Kahng B, Kim D
Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):030103. doi: 10.1103/PhysRevE.81.030103. Epub 2010 Mar 24.
The evolution of the Erdos-Rényi (ER) network by adding edges is a basis model for irreversible kinetic aggregation phenomena. Such ER processes can be described by a rate equation for the evolution of the cluster-size distribution with the connection kernel Kij approximately ij , where ij is the product of the sizes of two merging clusters. Here we study that when the giant cluster is discouraged to develop by a sublinear kernel Kij approximately (ij)omega with 0<or=omega<1/2 , the percolation transition (PT) is discontinuous. Such discontinuous PT can occur even when the ER dynamics evolves from proper initial conditions. The obtained evolutionary properties of the simple model sheds light on the origin of the discontinuous PT in other nonequilibrium kinetic systems.
通过添加边来演化的厄多斯 - 雷尼(ER)网络是不可逆动力学聚集现象的一个基础模型。这种ER过程可以用一个速率方程来描述,该方程用于描述具有连接核(K_{ij}\approx ij)的簇大小分布的演化,其中(ij)是两个合并簇大小的乘积。在这里,我们研究当通过(K_{ij}\approx(ij)^\omega)((0\leq\omega\lt\frac{1}{2}))的亚线性核来抑制巨簇发展时,渗流转变(PT)是不连续的。即使ER动力学从适当的初始条件开始演化,这种不连续的PT也可能发生。这个简单模型所得到的演化性质揭示了其他非平衡动力学系统中不连续PT的起源。