Suppr超能文献

CUDASW++2.0:基于单指令多线程(SIMT)和虚拟化单指令多数据(SIMD)抽象,在支持CUDA的图形处理器(GPU)上增强史密斯-沃特曼蛋白质数据库搜索功能。

CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions.

作者信息

Liu Yongchao, Schmidt Bertil, Maskell Douglas L

机构信息

School of Computer Engineering, Nanyang Technological University, Singapore.

出版信息

BMC Res Notes. 2010 Apr 6;3:93. doi: 10.1186/1756-0500-3-93.

Abstract

BACKGROUND

Due to its high sensitivity, the Smith-Waterman algorithm is widely used for biological database searches. Unfortunately, the quadratic time complexity of this algorithm makes it highly time-consuming. The exponential growth of biological databases further deteriorates the situation. To accelerate this algorithm, many efforts have been made to develop techniques in high performance architectures, especially the recently emerging many-core architectures and their associated programming models.

FINDINGS

This paper describes the latest release of the CUDASW++ software, CUDASW++ 2.0, which makes new contributions to Smith-Waterman protein database searches using compute unified device architecture (CUDA). A parallel Smith-Waterman algorithm is proposed to further optimize the performance of CUDASW++ 1.0 based on the single instruction, multiple thread (SIMT) abstraction. For the first time, we have investigated a partitioned vectorized Smith-Waterman algorithm using CUDA based on the virtualized single instruction, multiple data (SIMD) abstraction. The optimized SIMT and the partitioned vectorized algorithms were benchmarked, and remarkably, have similar performance characteristics. CUDASW++ 2.0 achieves performance improvement over CUDASW++ 1.0 as much as 1.74 (1.72) times using the optimized SIMT algorithm and up to 1.77 (1.66) times using the partitioned vectorized algorithm, with a performance of up to 17 (30) billion cells update per second (GCUPS) on a single-GPU GeForce GTX 280 (dual-GPU GeForce GTX 295) graphics card.

CONCLUSIONS

CUDASW++ 2.0 is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant performance improvement over CUDASW++ 1.0 using either the optimized SIMT algorithm or the partitioned vectorized algorithm for Smith-Waterman protein database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.

摘要

背景

由于其高灵敏度,史密斯-沃特曼算法被广泛用于生物数据库搜索。不幸的是,该算法的二次时间复杂度使其非常耗时。生物数据库的指数增长进一步恶化了这种情况。为了加速该算法,人们在高性能架构,特别是最近出现的多核架构及其相关编程模型方面进行了许多技术开发工作。

研究结果

本文介绍了CUDASW++软件的最新版本CUDASW++ 2.0,它在使用计算统一设备架构(CUDA)进行史密斯-沃特曼蛋白质数据库搜索方面做出了新贡献。提出了一种并行史密斯-沃特曼算法,基于单指令多线程(SIMT)抽象进一步优化CUDASW++ 1.0的性能。我们首次研究了基于虚拟化单指令多数据(SIMD)抽象的使用CUDA的分区矢量化史密斯-沃特曼算法。对优化后的SIMT算法和分区矢量化算法进行了基准测试,值得注意的是,它们具有相似的性能特征。使用优化后的SIMT算法,CUDASW++ 2.0比CUDASW++ 1.0的性能提高了1.74(1.72)倍,使用分区矢量化算法则提高了高达1.77(1.66)倍,在单GPU GeForce GTX 280(双GPU GeForce GTX 295)图形卡上每秒可更新高达17(30)亿个单元(GCUPS)。

结论

CUDASW++ 2.0是用CUDA和C++编程语言编写的公开可用的开源软件。通过充分利用常用的支持CUDA的低成本GPU的计算能力,在史密斯-沃特曼蛋白质数据库搜索中,使用优化后的SIMT算法或分区矢量化算法,它比CUDASW++ 1.0有显著的性能提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95b6/2907862/48252dc3ae72/1756-0500-3-93-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验