Suppr超能文献

ALDEN 算法用于评估 Stevens-Johnson 综合征和中毒性表皮坏死松解症中的药物相关性:与病例对照分析的比较。

ALDEN, an algorithm for assessment of drug causality in Stevens-Johnson Syndrome and toxic epidermal necrolysis: comparison with case-control analysis.

机构信息

Department of Dermatology, CHU Morvan, Brest, France.

出版信息

Clin Pharmacol Ther. 2010 Jul;88(1):60-8. doi: 10.1038/clpt.2009.252. Epub 2010 Apr 7.

Abstract

Epidermal necrolysis (EN)--either Stevens-Johnson syndrome (SJS) or toxic EN (TEN)--is a severe drug reaction. We constructed and evaluated a specific algorithm, algorithm of drug causality for EN (ALDEN), in order to improve the individual assessment of drug causality in EN. ALDEN causality scores were compared with those from the French pharmacovigilance method in 100 cases and the case-control results of the EuroSCAR study. Scores attributed by ALDEN segregated widely. ALDEN pointed to a "probable" or "very probable" causality in 69/100 cases as compared to 23/100 with the French method (P < 0.001). It scored "very unlikely" causality for 64% of medications vs. none with the French method. Results of ALDEN scores were strongly correlated with those of the EuroSCAR case-control analysis for drugs associated with EN (r = 0.90, P < 0.0001), with probable causality being reported in 218/329 exposures. ALDEN excluded causality in 321 drugs that the case-control analysis had described as "probably not associated" and in 22/233 drugs that had been described as inconclusive exposures. Being more sensitive than a general method, ALDEN, which correlates well with case-control analysis results, can be considered a reference tool in SJS/TEN.

摘要

表皮坏死松解症(EN)——史蒂文斯-约翰逊综合征(SJS)或中毒性表皮坏死松解症(TEN)——是一种严重的药物反应。我们构建并评估了一种专门的算法,即表皮坏死松解症药物因果关系算法(ALDEN),以提高对 EN 药物因果关系的个体评估。将 ALDEN 因果关系评分与 100 例中的法国药物警戒方法评分和 EuroSCAR 研究的病例对照结果进行比较。ALDEN 评分广泛分离。与法国方法相比,ALDEN 将 69/100 例归因于“可能”或“极可能”的因果关系,而法国方法为 23/100 例(P < 0.001)。它对 64%的药物评分“极不可能”因果关系,而法国方法为零。ALDEN 评分结果与 EuroSCAR 病例对照分析结果强烈相关,与 EN 相关的药物(r = 0.90,P < 0.0001)报告为“可能”因果关系,在 329 种暴露中报告了 218 种。病例对照分析将 321 种药物描述为“可能不相关”,233 种药物描述为不确定暴露,ALDEN 排除了这些药物的因果关系。ALDEN 比一般方法更敏感,与病例对照分析结果相关性良好,可作为 SJS/TEN 的参考工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验