Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103 Kiel, Germany.
Int Immunopharmacol. 2010 Jun;10(6):694-706. doi: 10.1016/j.intimp.2010.03.014. Epub 2010 Apr 7.
Control of the intracellular Mycobacterium tuberculosis (Mtb), mainly requires an appropriate ratio of Th1/Th2 cytokines to induce autophagy, a physiologically, and immunologically regulated process that has recently been highlighted as an innate defense mechanism against intracellular pathogens. Current vaccines/adjuvants induce both protective Th1 autophagy-promoting cytokines, such as IFN-gamma, and immunosuppressive Th2 autophagy-restraining cytokines, such as IL-4 and IL-13. TB infection itself is also characterized by relatively high levels of Th2 cytokines, which down-regulate Th1 responses and subsequently subvert adequate protective immunity, and a low ratio of IFN-gamma/IL-4. Therefore, there is a need for a safe and non-toxic vaccine/adjuvant that will induce Th1 autophagy-promoting cytokine (IFN-gamma) secretion and suppress the pre-existing subversive Th2 autophagy-restraining cytokines (IL-4 and IL-13). As lactic acid bacteria (LAB) belonging to the natural intestinal microflora and their components have been shown to shift immune responses against other antigens from Th2-type cytokines toward Th1-type cytokines like IFN-gamma, we investigated whether LAB can improve the polarization of Th1/Th2 cytokines and autophagic ability of mononuclear phagocytes in response to Mtb antigen.
Peripheral blood mononuclear cells (PBMCs), which are a part of the mononuclear phagocyte system and source of crucial macrophage activators in the in vivo situation, and human monocyte-derived macrophages (HMDMs) were treated with Mtb antigen in the presence or absence of two strains of LAB, L. rhammosus GG (LGG) and Bifidobacterium bifidum MF 20/5 (B.b). PBMCs cell culture supernatants were analyzed for the production of the autophagy-promoting factors IFN-gamma, and nitric oxide (NO) and the autophagy-restraining cytokines IL-4 and IL-13, using ELISA and Griess assays to detect the production of cytokines and NO, respectively. In HMDMs, expression of microtubule-associated protein 1 light chain 3 (LC3-I), membrane-associated (LC3-II) forms of LC3 protein and Beclin-1, as hallmarks of autophagy, were assessed using Western blot to detect the autophagy markers. The secreted interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin (IL)-12 and transformig growth factor-beta (TGF-beta), and chemokine (C-C motif) ligand 18 (CCL18) from HMDMs were determined by ELISA. Also, reverse transcription polymerase chain reaction (RT-PCR) analysis was used to assess the mRNA expressions of CCL18 in HMDMs.
Treatment of PBMCs with either Mtb antigen or with LAB significantly increased the IFN-gamma and NO production. Combination of Mtb antigen and LAB led to synergistic increase in IFN-gamma, and an additive increase in NO. Treatment with Mtb antigen alone significantly increased the IL-4 and IL-13 production. LAB significantly decreased IL-4 and IL-13 secretion in both unstimulated and Mtb antigen-stimulated PBMCs. The IFN-gamma/IL-4+IL-13 ratio was enhanced, indicating Th1/Th2 polarization. Treatment of macrophages with combined use of Mtb antigen and LAB led to an additive increase in Beclin-1, LC3-II expression, as well as in synergistic increase in IL-12 production. Treatment of macrophages with combined use of Mtb antigen and LAB led to a decrease in IL-6, IL-10, and CCL18 secretion. LAB inhibited the secretion of TGF-beta by Mtb-stimulated macrophages, however not significantly. Treatment of macrophages with combined use of Mtb antigen and LAB led to a decrease in CCL18 mRNA expression.
Our study implies that LAB may reinforce the response of the mononuclear phagocytes to Mtb antigen by inducing production of the autophagy-promoting factors IFN-gamma and NO, while decreasing the Th2 autophagy-restraining cytokines IL-4 and IL-13. Hence, combination of Mtb antigen and LAB may perhaps be safer in more efficacious TB vaccine formulation.
控制细胞内结核分枝杆菌(Mtb)主要需要适当的 Th1/Th2 细胞因子比例来诱导自噬,这是一种生理和免疫调节的过程,最近被强调为一种针对细胞内病原体的先天防御机制。目前的疫苗/佐剂会诱导保护性的 Th1 自噬促进细胞因子,如 IFN-γ,以及免疫抑制性的 Th2 自噬抑制细胞因子,如 IL-4 和 IL-13。TB 感染本身也以较高水平的 Th2 细胞因子为特征,这些细胞因子下调 Th1 反应,随后破坏足够的保护性免疫,IFN-γ/IL-4 的比例较低。因此,需要一种安全无毒的疫苗/佐剂,既能诱导 Th1 自噬促进细胞因子(IFN-γ)的分泌,又能抑制先前存在的抑制 Th2 自噬的细胞因子(IL-4 和 IL-13)。由于属于天然肠道菌群的乳酸菌(LAB)及其成分已被证明可以将针对其他抗原的免疫反应从 Th2 型细胞因子转向 IFN-γ 等 Th1 型细胞因子,我们研究了 LAB 是否可以改善单核吞噬细胞对 Mtb 抗原的 Th1/Th2 细胞因子极化和自噬能力。
外周血单核细胞(PBMCs)是单核吞噬细胞系统的一部分,也是体内情况下巨噬细胞激活剂的重要来源,以及人单核细胞衍生的巨噬细胞(HMDMs),用 Mtb 抗原处理,同时存在或不存在两种 LAB,鼠李糖乳杆菌 GG(LGG)和双歧双歧杆菌 MF 20/5(B.b)。用 ELISA 和 Griess 测定法检测细胞培养上清液中自噬促进因子 IFN-γ和一氧化氮(NO)以及自噬抑制细胞因子 IL-4 和 IL-13 的产生,分别检测细胞因子和 NO 的产生。在 HMDMs 中,使用 Western blot 检测微管相关蛋白 1 轻链 3(LC3-I)、膜结合(LC3-II)形式的 LC3 蛋白和 Beclin-1,作为自噬的标志物,检测自噬标志物。通过 ELISA 测定 HMDMs 分泌的白细胞介素 6(IL-6)、白细胞介素 10(IL-10)、白细胞介素(IL)-12 和转化生长因子-β(TGF-β)以及趋化因子(C-C 基序)配体 18(CCL18)。还使用逆转录聚合酶链反应(RT-PCR)分析评估 HMDMs 中 CCL18 的 mRNA 表达。
用 Mtb 抗原或 LAB 处理 PBMCs 均可显著增加 IFN-γ和 NO 的产生。Mtb 抗原和 LAB 的联合作用导致 IFN-γ协同增加,NO 则有相加作用。单独用 Mtb 抗原处理可显著增加 IL-4 和 IL-13 的产生。LAB 可显著降低未刺激和 Mtb 抗原刺激的 PBMCs 中 IL-4 和 IL-13 的分泌。IFN-γ/IL-4+IL-13 比值升高,表明 Th1/Th2 极化。用联合使用 Mtb 抗原和 LAB 处理巨噬细胞可导致 Beclin-1、LC3-II 表达的相加增加,以及 IL-12 产生的协同增加。用联合使用 Mtb 抗原和 LAB 处理巨噬细胞可导致 IL-6、IL-10 和 CCL18 分泌减少。LAB 抑制 Mtb 刺激的巨噬细胞分泌 TGF-β,但不显著。用联合使用 Mtb 抗原和 LAB 处理巨噬细胞可导致 CCL18 mRNA 表达降低。
我们的研究表明,LAB 可能通过诱导自噬促进因子 IFN-γ和 NO 的产生,同时减少 Th2 自噬抑制细胞因子 IL-4 和 IL-13 的分泌,从而增强单核吞噬细胞对 Mtb 抗原的反应。因此,Mtb 抗原和 LAB 的联合使用可能在更有效的 TB 疫苗配方中更安全有效。