Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, USA.
J Chem Phys. 2010 Apr 7;132(13):134502. doi: 10.1063/1.3367958.
We use hard x-ray resonant inelastic x-ray scattering (RIXS) and density functional theory (DFT) calculations to characterize charge transfer excitations in K(3)Mn(CN)(6). The combination of RIXS measurements and DFT calculations allows us to characterize the strength of the ligand-metal electronic interaction and assign the Raman resonances in the RIXS spectra to charge transfer excitations. With x-ray excitation energies resonant with the T(2g) and E(g) pre-edge peaks derived predominantly from the Mn 3d orbitals, we observe Raman resonances in the energy transfer range from 2 to 12 eV, which results from the filling of the 1s core-hole from T(1u)-symmetry occupied orbitals. DFT calculations indicate that these orbitals exhibit primarily ligand character, supporting the assignment of the energy transfer resonances to ligand-to-metal charge transfer excitations. Our RIXS measurements and DFT calculations also indicate that the E(g)-orbital spin-splits by roughly 0.8 eV, though we do not cleanly resolve the two absorption peaks in the RIXS spectra. We also see evidence for a metal-to-ligand charge transfer (MLCT) excitation when exciting with a 6545.0 eV incident photon, roughly 4 eV above the E(g) absorption peaks. The 6545.0 eV resonant emission spectrum shows a 6.0 eV energy transfer resonance, which corresponds to a final state hole in the T(2g) partially occupied orbital. DFT calculations indicate that excitation at 6545.0 eV populates an unoccupied T(1u)-symmetry orbital of primarily ligand character. Given the predominantly metal character of the final state hole, we assign the 6.0 eV Raman resonance to a MLCT excitation. These measurements demonstrate the ability of hard x-ray RIXS to characterize the valence electronic structure of coordination compounds.
我们使用硬 X 射线共振非弹性 X 射线散射(RIXS)和密度泛函理论(DFT)计算来表征 K(3)Mn(CN)(6)中的电荷转移激发。RIXS 测量和 DFT 计算的结合使我们能够表征配体-金属电子相互作用的强度,并将 RIXS 光谱中的拉曼共振分配给电荷转移激发。在 X 射线激发能量与主要来自 Mn 3d 轨道的 T(2g)和 E(g)预边峰共振的情况下,我们在 2 到 12 eV 的能量转移范围内观察到拉曼共振,这是由 T(1u)对称占据轨道的 1s 芯空填充引起的。DFT 计算表明,这些轨道主要具有配体特征,支持将能量转移共振分配给配体-金属电荷转移激发。我们的 RIXS 测量和 DFT 计算还表明,E(g)轨道的自旋分裂约为 0.8 eV,尽管我们在 RIXS 光谱中没有清晰地分辨出两个吸收峰。当用 6545.0 eV 的入射光子激发时,我们也看到了金属-配体电荷转移(MLCT)激发的证据,这大约比 E(g)吸收峰高出 4 eV。6545.0 eV 的共振发射光谱显示出 6.0 eV 的能量转移共振,这对应于 T(2g)部分占据轨道中的最终状态空穴。DFT 计算表明,在 6545.0 eV 的激发下,占据一个主要具有配体特征的未占据 T(1u)对称轨道。鉴于最终状态空穴主要具有金属特征,我们将 6.0 eV 的拉曼共振分配给 MLCT 激发。这些测量证明了硬 X 射线 RIXS 表征配合物价电子结构的能力。