Martinez del Rincon Jesús, Makris Dimitrios, Orrite Urunuela Carlos, Nebel Jean-Christophe
Digital Imaging Research Centre, Kingston University, KT1 2EE Surrey, UK.
IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):26-37. doi: 10.1109/TSMCB.2010.2044041. Epub 2010 Apr 12.
In this paper, a novel framework for visual tracking of human body parts is introduced. The approach presented demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera by using a limb-tracking system based on a 2-D articulated model and a double-tracking strategy. Its key contribution is that the 2-D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints that are linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.
本文介绍了一种用于人体部位视觉跟踪的新颖框架。所提出的方法通过使用基于二维关节模型的肢体跟踪系统和双重跟踪策略,展示了利用来自单个未校准相机的数据恢复人体姿势的可行性。其关键贡献在于,二维模型仅受关于人类双足运动的生物力学知识的约束,而不依赖于与特定活动或相机视图相关的约束。这些特性使我们的方法适用于实际的视觉监控应用。在一组室内和室外序列上进行的实验证明了我们的方法在跟踪人体下半身部位方面的有效性。此外,还与当前的跟踪方法进行了详细比较。