Suppr超能文献

环形孔和圆柱形孔中的抗菌肽。

Antimicrobial peptides in toroidal and cylindrical pores.

作者信息

Mihajlovic Maja, Lazaridis Themis

机构信息

Department of Chemistry, The City College of New York, New York, NY 10031, USA.

出版信息

Biochim Biophys Acta. 2010 Aug;1798(8):1485-93. doi: 10.1016/j.bbamem.2010.04.004. Epub 2010 Apr 18.

Abstract

Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or closes if glutamines in the N-termini are not located within the pore. On the other hand, when a melittin tetramer is embedded in toroidal pore or in a cylindrical pore, at the end of the simulation the pore is lined both with peptides and lipid headgroups, and, thus, can be classified as a toroidal pore. These observations agree with the prevailing views that alamethicin forms barrel-stave pores whereas melittin forms toroidal pores. Both alamethicin and melittin form amphiphilic helices in the presence of membranes, but their net charge differs; at pH approximately 7, the net charge of alamethicin is -1 whereas that of melittin is +5. This gives rise to stronger electrostatic interactions of melittin with membranes than those of alamethicin. The melittin tetramer interacts more strongly with lipids in the toroidal pore than in the cylindrical one, due to more favorable electrostatic interactions.

摘要

抗菌肽(AMPs)是一类通常为阳离子的小肽,可使生物膜通透。其作用机制仍未完全清楚。在此,我们使用肽在预先形成的环形孔和圆柱形孔中的分子动力学(MD)模拟,研究了阿拉米辛和蜂毒素对不同形状孔的偏好。当一个阿拉米辛六聚体最初嵌入圆柱形孔中时,在模拟结束时,如果N端的谷氨酰胺不在孔内,孔仍保持圆柱形或关闭。另一方面,当一个蜂毒素四聚体嵌入环形孔或圆柱形孔中时,在模拟结束时,孔内既有肽又有脂质头部基团排列,因此可归类为环形孔。这些观察结果与普遍观点一致,即阿拉米辛形成桶板孔而蜂毒素形成环形孔。阿拉米辛和蜂毒素在有膜存在时都会形成两亲性螺旋,但它们的净电荷不同;在pH约为7时,阿拉米辛的净电荷为-1,而蜂毒素的净电荷为+5。这使得蜂毒素与膜之间的静电相互作用比阿拉米辛更强。由于更有利的静电相互作用,蜂毒素四聚体与环形孔中的脂质相互作用比与圆柱形孔中的脂质更强。

相似文献

1
Antimicrobial peptides in toroidal and cylindrical pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1485-93. doi: 10.1016/j.bbamem.2010.04.004. Epub 2010 Apr 18.
2
Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides.
Biochim Biophys Acta. 2012 May;1818(5):1274-83. doi: 10.1016/j.bbamem.2012.01.016. Epub 2012 Jan 25.
3
Antimicrobial peptides bind more strongly to membrane pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1494-502. doi: 10.1016/j.bbamem.2010.02.023. Epub 2010 Feb 24.
4
Barrel-stave model or toroidal model? A case study on melittin pores.
Biophys J. 2001 Sep;81(3):1475-85. doi: 10.1016/S0006-3495(01)75802-X.
5
Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.
Biophys J. 2003 Jun;84(6):3751-8. doi: 10.1016/S0006-3495(03)75103-0.
6
Melittin can permeabilize membranes via large transient pores.
Nat Commun. 2024 Aug 23;15(1):7281. doi: 10.1038/s41467-024-51691-1.
7
Effects of Peptide Charge, Orientation, and Concentration on Melittin Transmembrane Pores.
Biophys J. 2018 Jun 19;114(12):2865-2874. doi: 10.1016/j.bpj.2018.05.006.
8
Energetics of pore formation induced by membrane active peptides.
Biochemistry. 2004 Mar 30;43(12):3590-9. doi: 10.1021/bi036153r.
9
The structure of a melittin-stabilized pore.
Biophys J. 2015 May 19;108(10):2424-2426. doi: 10.1016/j.bpj.2015.04.006.
10
Toroidal pores formed by antimicrobial peptides show significant disorder.
Biochim Biophys Acta. 2008 Oct;1778(10):2308-17. doi: 10.1016/j.bbamem.2008.06.007. Epub 2008 Jun 18.

引用本文的文献

2
Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers.
Front Microbiol. 2025 Feb 3;16:1526250. doi: 10.3389/fmicb.2025.1526250. eCollection 2025.
5
Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities.
Clin Microbiol Rev. 2024 Sep 12;37(3):e0013323. doi: 10.1128/cmr.00133-23. Epub 2024 Jul 12.
6
Structural basis of closed groove scrambling by a TMEM16 protein.
Nat Struct Mol Biol. 2024 Oct;31(10):1468-1481. doi: 10.1038/s41594-024-01284-9. Epub 2024 Apr 29.
7
The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation.
J Membr Biol. 2023 Dec;256(4-6):343-372. doi: 10.1007/s00232-023-00289-7. Epub 2023 Aug 31.
8
Structural basis of closed groove scrambling by a TMEM16 protein.
Res Sq. 2023 Aug 18:rs.3.rs-3256633. doi: 10.21203/rs.3.rs-3256633/v1.
9
Interaction of Uperin Peptides with Model Membranes: Molecular Dynamics Study.
Membranes (Basel). 2023 Mar 23;13(4):370. doi: 10.3390/membranes13040370.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Antimicrobial peptides bind more strongly to membrane pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1494-502. doi: 10.1016/j.bbamem.2010.02.023. Epub 2010 Feb 24.
4
Cause and effect of melittin-induced pore formation: a computational approach.
Langmuir. 2009 Oct 20;25(20):12235-42. doi: 10.1021/la902660q.
5
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
6
Lipid-alamethicin interactions influence alamethicin orientation.
Biophys J. 1991 Nov;60(5):1079-87. doi: 10.1016/S0006-3495(91)82144-0.
8
Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations.
Biochim Biophys Acta. 2009 Jun;1788(6):1387-97. doi: 10.1016/j.bbamem.2009.02.013. Epub 2009 Feb 25.
9
Control of cell selectivity of antimicrobial peptides.
Biochim Biophys Acta. 2009 Aug;1788(8):1687-92. doi: 10.1016/j.bbamem.2008.09.013. Epub 2008 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验