Suppr超能文献

基于定向构象搜索的 RNA 晶体学半自动建模方法

Semiautomated model building for RNA crystallography using a directed rotameric approach.

机构信息

Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 May 4;107(18):8177-82. doi: 10.1073/pnas.0911888107. Epub 2010 Apr 19.

Abstract

Structured RNA molecules play essential roles in a variety of cellular processes; however, crystallographic studies of such RNA molecules present a large number of challenges. One notable complication arises from the low resolutions typical of RNA crystallography, which results in electron density maps that are imprecise and difficult to interpret. This problem is exacerbated by the lack of computational tools for RNA modeling, as many of the techniques commonly used in protein crystallography have no equivalents for RNA structure. This leads to difficulty and errors in the model building process, particularly in modeling of the RNA backbone, which is highly error prone due to the large number of variable torsion angles per nucleotide. To address this, we have developed a method for accurately building the RNA backbone into maps of intermediate or low resolution. This method is semiautomated, as it requires a crystallographer to first locate phosphates and bases in the electron density map. After this initial trace of the molecule, however, an accurate backbone structure can be built without further user intervention. To accomplish this, backbone conformers are first predicted using RNA pseudotorsions and the base-phosphate perpendicular distance. Detailed backbone coordinates are then calculated to conform both to the predicted conformer and to the previously located phosphates and bases. This technique is shown to produce accurate backbone structure even when starting from imprecise phosphate and base coordinates. A program implementing this methodology is currently available, and a plugin for the Coot model building program is under development.

摘要

结构 RNA 分子在各种细胞过程中发挥着重要作用;然而,此类 RNA 分子的晶体学研究提出了许多挑战。一个值得注意的复杂情况是 RNA 晶体学的典型低分辨率,这导致电子密度图不精确且难以解释。由于缺乏用于 RNA 建模的计算工具,这个问题更加严重,因为许多在蛋白质晶体学中常用的技术没有 RNA 结构的等效物。这导致模型构建过程中的困难和错误,特别是在 RNA 骨架的建模中,由于每个核苷酸的可变扭转角数量众多,因此非常容易出错。为了解决这个问题,我们开发了一种方法,可以将 RNA 骨架准确地构建到中等或低分辨率的图谱中。该方法是半自动的,因为它要求晶体学家首先在电子密度图中定位磷酸和碱基。然而,在对分子进行此初始追踪之后,可以在没有进一步用户干预的情况下构建准确的骨架结构。为此,首先使用 RNA 伪扭转和碱基-磷酸垂直距离来预测骨架构象。然后,计算详细的骨架坐标以符合预测的构象以及先前定位的磷酸和碱基。即使从不精确的磷酸和碱基坐标开始,该技术也能产生准确的骨架结构。目前已实现该方法的程序,并且正在开发 Coot 模型构建程序的插件。

相似文献

1
Semiautomated model building for RNA crystallography using a directed rotameric approach.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8177-82. doi: 10.1073/pnas.0911888107. Epub 2010 Apr 19.
2
RCrane: semi-automated RNA model building.
Acta Crystallogr D Biol Crystallogr. 2012 Aug;68(Pt 8):985-95. doi: 10.1107/S0907444912018549. Epub 2012 Jul 17.
3
Geometric properties of nucleic acids with potential for autobuilding.
Acta Crystallogr A. 2011 Jan;67(Pt 1):1-8. doi: 10.1107/S0108767310039140. Epub 2010 Nov 11.
4
RNA backbone is rotameric.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13904-9. doi: 10.1073/pnas.1835769100. Epub 2003 Nov 11.
5
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
6
Computational Methods for RNA Structure Validation and Improvement.
Methods Enzymol. 2015;558:181-212. doi: 10.1016/bs.mie.2015.01.007. Epub 2015 Apr 2.
7
Automatic modeling of protein backbones in electron-density maps via prediction of Calpha coordinates.
Acta Crystallogr D Biol Crystallogr. 2002 Dec;58(Pt 12):2043-54. doi: 10.1107/s0907444902016724. Epub 2002 Nov 23.
8
RNA Structure Refinement Using the ERRASER-Phenix Pipeline.
Methods Mol Biol. 2016;1320:269-82. doi: 10.1007/978-1-4939-2763-0_17.
9
Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
J Mol Biol. 1998 Jul 17;280(3):407-20. doi: 10.1006/jmbi.1998.1865.
10
A probabilistic approach to protein backbone tracing in electron density maps.
Bioinformatics. 2006 Jul 15;22(14):e81-9. doi: 10.1093/bioinformatics/btl252.

引用本文的文献

1
Lifetime of ground conformational state determines the activity of structured RNA.
Nat Chem Biol. 2025 Feb 12. doi: 10.1038/s41589-025-01843-1.
2
Scaffold-enabled high-resolution cryo-EM structure determination of RNA.
Nat Commun. 2025 Jan 21;16(1):880. doi: 10.1038/s41467-024-55699-5.
3
Scaffold-enabled high-resolution cryo-EM structure determination of RNA.
bioRxiv. 2024 Jun 10:2024.06.10.598011. doi: 10.1101/2024.06.10.598011.
5
Structural basis of branching during RNA splicing.
Nat Struct Mol Biol. 2024 Jan;31(1):179-189. doi: 10.1038/s41594-023-01150-0. Epub 2023 Dec 6.
6
The pseudotorsional space of RNA.
RNA. 2023 Dec;29(12):1896-1909. doi: 10.1261/rna.079821.123. Epub 2023 Oct 4.
7
Crystal Structure of the RNA Lariat Debranching Enzyme Dbr1 with Hydrolyzed Phosphorothioate RNA Product.
Biochemistry. 2022 Dec 20;61(24):2933-2939. doi: 10.1021/acs.biochem.2c00590. Epub 2022 Dec 9.
8
AMIGOS III: pseudo-torsion angle visualization and motif-based structure comparison of nucleic acids.
Bioinformatics. 2022 May 13;38(10):2937-2939. doi: 10.1093/bioinformatics/btac207.
9
Refinement of RNA Structures Using Amber Force Fields.
Crystals (Basel). 2021 Jul;11(7). doi: 10.3390/cryst11070771. Epub 2021 Jul 1.
10
RNANet: an automatically built dual-source dataset integrating homologous sequences and RNA structures.
Bioinformatics. 2021 Jun 9;37(9):1218-1224. doi: 10.1093/bioinformatics/btaa944.

本文引用的文献

2
Crystal structure of a self-spliced group II intron.
Science. 2008 Apr 4;320(5872):77-82. doi: 10.1126/science.1153803.
4
Mutational analysis of the purine riboswitch aptamer domain.
Biochemistry. 2007 Nov 20;46(46):13297-309. doi: 10.1021/bi700410g. Epub 2007 Oct 26.
5
Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure.
J Mol Biol. 2007 Sep 28;372(4):942-957. doi: 10.1016/j.jmb.2007.06.058. Epub 2007 Jun 27.
6
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83. doi: 10.1093/nar/gkm216. Epub 2007 Apr 22.
7
RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone.
J Math Biol. 2008 Jan;56(1-2):253-78. doi: 10.1007/s00285-007-0082-x. Epub 2007 Mar 31.
8
Structure of the 70S ribosome complexed with mRNA and tRNA.
Science. 2006 Sep 29;313(5795):1935-42. doi: 10.1126/science.1131127. Epub 2006 Sep 7.
9
The Buccaneer software for automated model building. 1. Tracing protein chains.
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1002-11. doi: 10.1107/S0907444906022116. Epub 2006 Aug 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验