Suppr超能文献

基于样条分析的单粒子轨迹的空间结构和扩散动力学。

Spatial structure and diffusive dynamics from single-particle trajectories using spline analysis.

机构信息

Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.

出版信息

Biophys J. 2010 Apr 21;98(8):1712-21. doi: 10.1016/j.bpj.2009.12.4299.

Abstract

Single-particle tracking of biomolecular probes has provided a wealth of information about intracellular trafficking and the dynamics of proteins and lipids in the cell membrane. Conventional mean-square displacement (MSD) analysis of single-particle trajectories often assumes that probes are moving in a uniform environment. However, the observed two-dimensional motion of probe particles is influenced by the local three-dimensional geometry of the cell membrane and intracellular structures, which are rarely flat at the submicron scale. This complex geometry can lead to spatially confined trajectories that are difficult to analyze and interpret using conventional two-dimensional MSD analysis. Here we present two methods to analyze spatially confined trajectories: spline-curve dynamics analysis, which extends conventional MSD analysis to measure diffusive motion in confined trajectories; and spline-curve spatial analysis, which measures spatial structures smaller than the limits of optical resolution. We show, using simulated random walks and experimental trajectories of quantum dot probes, that differences in measured two-dimensional diffusion coefficients do not always reflect differences in underlying diffusive dynamics, but can instead be due to differences in confinement geometries of cellular structures.

摘要

生物分子探针的单颗粒示踪技术为细胞内运输以及细胞膜上蛋白质和脂质的动力学提供了丰富的信息。传统的单颗粒轨迹均方位移(MSD)分析通常假设探针在均匀的环境中移动。然而,观察到的探针粒子的二维运动受到细胞膜和细胞内结构的局部三维几何形状的影响,在亚微米尺度上这些结构很少是平坦的。这种复杂的几何形状会导致轨迹受到空间限制,这使得使用传统的二维 MSD 分析来分析和解释这些轨迹变得非常困难。在这里,我们提出了两种分析空间受限轨迹的方法:样条曲线动力学分析,它将传统的 MSD 分析扩展到测量受限轨迹中的扩散运动;以及样条曲线空间分析,它可以测量小于光学分辨率限制的空间结构。我们使用模拟随机漫步和量子点探针的实验轨迹表明,测量的二维扩散系数的差异并不总是反映出基础扩散动力学的差异,而是可能由于细胞结构的限制几何形状的差异所致。

相似文献

1
Spatial structure and diffusive dynamics from single-particle trajectories using spline analysis.
Biophys J. 2010 Apr 21;98(8):1712-21. doi: 10.1016/j.bpj.2009.12.4299.
2
Quantitative analysis of single particle trajectories: mean maximal excursion method.
Biophys J. 2010 Apr 7;98(7):1364-72. doi: 10.1016/j.bpj.2009.12.4282.
3
4
Time series analysis of particle tracking data for molecular motion on the cell membrane.
Bull Math Biol. 2009 Nov;71(8):1967-2024. doi: 10.1007/s11538-009-9434-6. Epub 2009 Aug 6.
5
Automatic detection of diffusion modes within biological membranes using back-propagation neural network.
BMC Bioinformatics. 2016 May 4;17(1):197. doi: 10.1186/s12859-016-1064-z.
8
Optimal fits of diffusion constants from single-time data points of Brownian trajectories.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):060101. doi: 10.1103/PhysRevE.86.060101. Epub 2012 Dec 20.
10
Anisotropic diffusion of membrane proteins at experimental timescales.
J Chem Phys. 2021 Jul 7;155(1):015102. doi: 10.1063/5.0054973.

引用本文的文献

1
Lateral diffusion on tubular membranes: quantification of measurements bias.
PLoS One. 2011;6(9):e25731. doi: 10.1371/journal.pone.0025731. Epub 2011 Sep 29.
2
Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function.
Cell. 2011 Aug 19;146(4):593-606. doi: 10.1016/j.cell.2011.06.049.

本文引用的文献

1
Geometric and projection effects in Kramers-Moyal analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031137. doi: 10.1103/PhysRevE.80.031137. Epub 2009 Sep 24.
2
Velocity, processivity, and individual steps of single myosin V molecules in live cells.
Biophys J. 2009 May 20;96(10):4268-75. doi: 10.1016/j.bpj.2009.02.045.
3
Tracking bio-molecules in live cells using quantum dots.
J Biophotonics. 2008 Sep;1(4):287-98. doi: 10.1002/jbio.200810029.
5
Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3125-30. doi: 10.1073/pnas.0813131106. Epub 2009 Feb 6.
6
Diffusion in a fluid membrane with a flexible cortical cytoskeleton.
Biophys J. 2009 Feb;96(3):818-30. doi: 10.1016/j.bpj.2008.10.038.
7
High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells.
Biophys J. 2008 Dec 15;95(12):6025-43. doi: 10.1529/biophysj.108.140392. Epub 2008 Oct 3.
8
New concepts in synaptic biology derived from single-molecule imaging.
Neuron. 2008 Aug 14;59(3):359-74. doi: 10.1016/j.neuron.2008.06.022.
9
Actin restricts FcepsilonRI diffusion and facilitates antigen-induced receptor immobilization.
Nat Cell Biol. 2008 Aug;10(8):955-63. doi: 10.1038/ncb1755. Epub 2008 Jul 20.
10
Tracking single molecules in the live cell plasma membrane-Do's and Don't's.
Methods. 2008 Oct;46(2):131-40. doi: 10.1016/j.ymeth.2008.06.010. Epub 2008 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验