Suppr超能文献

用于分离 t 分布模型天体物理图的自适应 Langevin 采样器。

Adaptive Langevin sampler for separation of t-distribution modelled astrophysical maps.

机构信息

Institute of Information Science and Technologies, Italian National Research Council, Pisa, Italy.

出版信息

IEEE Trans Image Process. 2010 Sep;19(9):2357-68. doi: 10.1109/TIP.2010.2048613. Epub 2010 Apr 19.

Abstract

We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which enables parallel drawing of random samples from the posterior, and reduces the computation time significantly (by two orders of magnitude). In addition, Student's t-distribution parameters are updated throughout the iterations. The results on astrophysical source separation are assessed with two performance criteria defined in the pixel and the frequency domains.

摘要

我们提出用学生 t 分布来对天体物理源图的图像差分进行建模,并将其作为先验信息应用于贝叶斯源分离方法中。我们引入了一种有效的马尔可夫链蒙特卡罗(MCMC)抽样方案来对天体物理源进行去混合,并描述了其推导细节。在这个方案中,我们使用朗之万随机微分方程进行跃迁,这使得可以从后验中并行地抽取随机样本,并显著减少计算时间(减少两个数量级)。此外,学生 t 分布的参数在迭代过程中不断更新。我们使用在像素域和频率域中定义的两个性能标准来评估天体物理源分离的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验