Suppr超能文献

定制设计的蛋白质作为新型治疗工具? arrestins 的案例。

Custom-designed proteins as novel therapeutic tools? The case of arrestins.

机构信息

Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Expert Rev Mol Med. 2010 Apr 23;12:e13. doi: 10.1017/S1462399410001444.

Abstract

Multiple genetic disorders can be associated with excessive signalling by mutant G-protein-coupled receptors (GPCRs) that are either constitutively active or have lost sites where phosphorylation by GPCR kinases is necessary for desensitisation by cognate arrestins. Phosphorylation-independent arrestin1 can compensate for defects in phosphorylation of the GPCR rhodopsin in retinal rod cells, facilitating recovery, improving light responsiveness, and promoting photoreceptor survival. These proof-of-principle experiments show that, based on mechanistic understanding of the inner workings of a protein, one can modify its functional characteristics to generate custom-designed mutants that improve the balance of signalling in congenital and acquired disorders. Manipulations of arrestin elements responsible for scaffolding mitogen-activated protein kinase cascades and binding other signalling proteins involved in life-or-death decisions in the cell are likely to yield mutants that affect cell survival and proliferation in the desired direction. Although this approach is still in its infancy, targeted redesign of individual functions of many proteins offers a promise of a completely new therapeutic toolbox with huge potential.

摘要

多种遗传疾病与突变 G 蛋白偶联受体(GPCR)的过度信号传导有关,这些受体要么是组成性激活的,要么是失去了磷酸化所必需的位点,无法通过 GPCR 激酶磷酸化来脱敏。非磷酸化依赖的 arrestin1 可以补偿视网膜杆状细胞中 GPCR 视紫红质磷酸化的缺陷,促进恢复,提高光反应性,并促进光感受器存活。这些原理验证实验表明,基于对蛋白质内部工作机制的理解,可以修饰其功能特性,生成定制设计的突变体,从而改善先天性和获得性疾病中信号转导的平衡。负责构建丝裂原活化蛋白激酶级联和结合细胞中与生死决策相关的其他信号蛋白的 arrestin 元件的操作,可能会产生影响细胞存活和增殖的突变体朝着所需的方向。尽管这种方法仍处于起步阶段,但对许多蛋白质的单个功能进行靶向重新设计,有望提供一个具有巨大潜力的全新治疗工具箱。

相似文献

1
Custom-designed proteins as novel therapeutic tools? The case of arrestins.
Expert Rev Mol Med. 2010 Apr 23;12:e13. doi: 10.1017/S1462399410001444.
2
Enhanced arrestin facilitates recovery and protects rods lacking rhodopsin phosphorylation.
Curr Biol. 2009 Apr 28;19(8):700-5. doi: 10.1016/j.cub.2009.02.065. Epub 2009 Apr 9.
3
Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
Cell Signal. 2013 Nov;25(11):2155-62. doi: 10.1016/j.cellsig.2013.07.009. Epub 2013 Jul 17.
5
Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
J Neurosci. 2016 Jun 29;36(26):6973-87. doi: 10.1523/JNEUROSCI.3544-15.2016.
6
Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
J Biol Chem. 2005 Dec 16;280(50):41184-91. doi: 10.1074/jbc.M506935200. Epub 2005 Oct 11.
7
Enhanced phosphorylation-independent arrestins and gene therapy.
Handb Exp Pharmacol. 2014;219:133-52. doi: 10.1007/978-3-642-41199-1_7.
8
Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding.
J Biol Chem. 2011 Jan 14;286(2):1420-8. doi: 10.1074/jbc.M110.151043. Epub 2010 Oct 21.
9
Each rhodopsin molecule binds its own arrestin.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3125-8. doi: 10.1073/pnas.0610886104. Epub 2007 Feb 20.

引用本文的文献

1
Modulating signalling lifetime to optimise a prototypical animal opsin for optogenetic applications.
Pflugers Arch. 2023 Dec;475(12):1387-1407. doi: 10.1007/s00424-023-02879-9. Epub 2023 Dec 1.
2
Receptor-Arrestin Interactions: The GPCR Perspective.
Biomolecules. 2021 Feb 4;11(2):218. doi: 10.3390/biom11020218.
3
Targeting arrestin interactions with its partners for therapeutic purposes.
Adv Protein Chem Struct Biol. 2020;121:169-197. doi: 10.1016/bs.apcsb.2019.11.011. Epub 2019 Dec 18.
4
Arrestin-1 engineering facilitates complex stabilization with native rhodopsin.
Sci Rep. 2019 Jan 24;9(1):439. doi: 10.1038/s41598-018-36881-4.
5
Beyond traditional pharmacology: new tools and approaches.
Br J Pharmacol. 2015 Jul;172(13):3229-41. doi: 10.1111/bph.13066. Epub 2015 Jun 10.
6
Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes.
Cell Signal. 2014 Jul;26(7):1523-31. doi: 10.1016/j.cellsig.2014.03.019. Epub 2014 Mar 29.
7
Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains.
Cell Signal. 2014 Apr;26(4):766-76. doi: 10.1016/j.cellsig.2014.01.001. Epub 2014 Jan 8.
8
Therapeutic potential of small molecules and engineered proteins.
Handb Exp Pharmacol. 2014;219:1-12. doi: 10.1007/978-3-642-41199-1_1.

本文引用的文献

1
Regulation of amygdalar PKA by beta-arrestin-2/phosphodiesterase-4 complex is critical for fear conditioning.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21918-23. doi: 10.1073/pnas.0906941106. Epub 2009 Dec 2.
2
The role of arrestin alpha-helix I in receptor binding.
J Mol Biol. 2010 Jan 8;395(1):42-54. doi: 10.1016/j.jmb.2009.10.058. Epub 2009 Oct 31.
3
A G protein-coupled receptor at work: the rhodopsin model.
Trends Biochem Sci. 2009 Nov;34(11):540-52. doi: 10.1016/j.tibs.2009.07.005. Epub 2009 Oct 21.
4
A scanning peptide array approach uncovers association sites within the JNK/beta arrestin signalling complex.
FEBS Lett. 2009 Oct 20;583(20):3310-6. doi: 10.1016/j.febslet.2009.09.035. Epub 2009 Sep 24.
5
RGS9 concentration matters in rod phototransduction.
Biophys J. 2009 Sep 16;97(6):1538-47. doi: 10.1016/j.bpj.2009.06.037.
6
'7TM receptor allostery: putting numbers to shapeshifting proteins.
Trends Pharmacol Sci. 2009 Sep;30(9):460-9. doi: 10.1016/j.tips.2009.06.007. Epub 2009 Sep 2.
7
Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking.
J Biol Chem. 2009 Oct 23;284(43):29860-72. doi: 10.1074/jbc.M109.023366. Epub 2009 Aug 25.
8
Diversity in arrestin function.
Cell Mol Life Sci. 2009 Sep;66(18):2953-73. doi: 10.1007/s00018-009-0088-1. Epub 2009 Jul 12.
9
The structure and function of G-protein-coupled receptors.
Nature. 2009 May 21;459(7245):356-63. doi: 10.1038/nature08144.
10
The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization.
EMBO J. 2009 Jun 17;28(12):1684-96. doi: 10.1038/emboj.2009.128. Epub 2009 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验