Suppr超能文献

分布式系统中的并行谱聚类。

Parallel spectral clustering in distributed systems.

机构信息

Yahoo! Inc., Sunnyvale, CA 94089, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):568-86. doi: 10.1109/TPAMI.2010.88.

Abstract

Spectral clustering algorithms have been shown to be more effective in finding clusters than some traditional algorithms, such as k-means. However, spectral clustering suffers from a scalability problem in both memory use and computational time when the size of a data set is large. To perform clustering on large data sets, we investigate two representative ways of approximating the dense similarity matrix. We compare one approach by sparsifying the matrix with another by the Nyström method. We then pick the strategy of sparsifying the matrix via retaining nearest neighbors and investigate its parallelization. We parallelize both memory use and computation on distributed computers. Through an empirical study on a document data set of 193,844 instances and a photo data set of 2,121,863, we show that our parallel algorithm can effectively handle large problems.

摘要

谱聚类算法在发现聚类方面比一些传统算法(如 k-均值)更有效。然而,当数据集的大小较大时,谱聚类在内存使用和计算时间方面都存在可扩展性问题。为了对大数据集进行聚类,我们研究了两种近似密集相似矩阵的代表性方法。我们通过稀疏化矩阵和 Nyström 方法对矩阵进行近似化,然后选择通过保留最近邻来稀疏化矩阵的策略,并研究其并行化。我们在分布式计算机上并行化内存使用和计算。通过对一个包含 193844 个实例的文档数据集和一个包含 2121863 个实例的照片数据集的实证研究,我们表明我们的并行算法可以有效地处理大型问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验