Biesdorf Andreas, Wörz Stefan, Kaiser Hans-Jürgen, Stippich Christoph, Rohr Karl
Dept. Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, University of Heidelberg, BIOQUANT, IPMB, and DKFZ Heidelberg.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):607-15. doi: 10.1007/978-3-642-04268-3_75.
We introduce a new hybrid approach for spline-based elastic registration of multimodal medical images. The approach uses point landmarks as well as intensity information based on local analytic measures for joint entropy and mutual information. The information-theoretic similarity measures are computationally efficient and can be optimized independently for each voxel. We have applied our approach to synthetic images, brain phantom images, as well as clinically relevant multimodal medical images. We also compared our measures with previous measures.
我们介绍了一种用于多模态医学图像基于样条的弹性配准的新型混合方法。该方法使用点地标以及基于联合熵和互信息的局部分析度量的强度信息。信息论相似性度量在计算上是高效的,并且可以针对每个体素独立进行优化。我们已将我们的方法应用于合成图像、脑部体模图像以及临床相关的多模态医学图像。我们还将我们的度量与先前的度量进行了比较。