Suppr超能文献

4D-CT肺配准的评估。

Evaluation of 4D-CT lung registration.

作者信息

Kabus Sven, Klinder Tobias, Murphy Keelin, van Ginneken Bram, van Lorenz Cristian, Pluim Josien P W

机构信息

Philips Research Europe, Hamburg, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2009;12(Pt 1):747-54. doi: 10.1007/978-3-642-04268-3_92.

Abstract

Non-rigid registration accuracy assessment is typically performed by evaluating the target registration error at manually placed landmarks. For 4D-CT lung data, we compare two sets of landmark distributions: a smaller set primarily defined on vessel bifurcations as commonly described in the literature and a larger set being well-distributed throughout the lung volume. For six different registration schemes (three in-house schemes and three schemes frequently used by the community) the landmark error is evaluated and found to depend significantly on the distribution of the landmarks. In particular, lung regions near to the pleura show a target registration error three times larger than near-mediastinal regions. While the inter-method variability on the landmark positions is rather small, the methods show discriminating differences with respect to consistency and local volume change. In conclusion, both a well-distributed set of landmarks and a deformation vector field analysis are necessary for reliable non-rigid registration accuracy assessment.

摘要

非刚性配准精度评估通常是通过在手动放置的地标处评估目标配准误差来进行的。对于4D-CT肺部数据,我们比较了两组地标分布:一组较小的主要定义在文献中常见的血管分叉处,另一组较大的在整个肺容积中分布良好。对于六种不同的配准方案(三种内部方案和三种社区常用方案),评估了地标误差,发现其显著依赖于地标的分布。特别是,靠近胸膜的肺区域显示出的目标配准误差比靠近纵隔的区域大三倍。虽然地标位置的方法间变异性相当小,但这些方法在一致性和局部体积变化方面显示出有区别的差异。总之,对于可靠的非刚性配准精度评估,一组分布良好的地标和变形矢量场分析都是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验