Suppr超能文献

从基因表达数据中学习组合转录动态。

Learning combinatorial transcriptional dynamics from gene expression data.

机构信息

Department of Computer Science, Technische Universität Berlin D-10587 Berlin, Germany.

出版信息

Bioinformatics. 2010 Jul 1;26(13):1623-9. doi: 10.1093/bioinformatics/btq244. Epub 2010 May 5.

Abstract

MOTIVATION

mRNA transcriptional dynamics is governed by a complex network of transcription factor (TF) proteins. Experimental and theoretical analysis of this process is hindered by the fact that measurements of TF activity in vivo is very challenging. Current models that jointly infer TF activities and model parameters rely on either of the two main simplifying assumptions: either the dynamics is simplified (e.g. assuming quasi-steady state) or the interactions between TFs are ignored, resulting in models accounting for a single TF.

RESULTS

We present a novel approach to reverse engineer the dynamics of multiple TFs jointly regulating the expression of a set of genes. The model relies on a continuous time, differential equation description of transcriptional dynamics where TFs are treated as latent on/off variables and are modelled using a switching stochastic process (telegraph process). The model can not only incorporate both activation and repression, but allows any non-trivial interaction between TFs, including AND and OR gates. By using a factorization assumption within a variational Bayesian treatment we formulate a framework that can reconstruct both the activity profiles of the TFs and the type of regulation from time series gene expression data. We demonstrate the identifiability of the model on a simple but non-trivial synthetic example, and then use it to formulate non-trivial predictions about transcriptional control during yeast metabolism.

AVAILABILITY

http://homepages.inf.ed.ac.uk/gsanguin/

CONTACT

g.sanguinetti@ed.ac.uk

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

mRNA 转录动力学受转录因子 (TF) 蛋白的复杂网络控制。由于在体内测量 TF 活性非常具有挑战性,因此对该过程进行实验和理论分析受到了阻碍。当前联合推断 TF 活性和模型参数的模型依赖于两种主要简化假设之一:要么简化动力学(例如,假设准稳态),要么忽略 TF 之间的相互作用,从而导致仅考虑单个 TF 的模型。

结果

我们提出了一种新的方法来反向工程共同调节一组基因表达的多个 TF 的动力学。该模型依赖于转录动力学的连续时间、微分方程描述,其中 TF 被视为潜在的开/关变量,并使用切换随机过程(电报过程)进行建模。该模型不仅可以包含激活和抑制,还允许 TF 之间进行任何非平凡的相互作用,包括 AND 和 OR 门。通过在变分贝叶斯处理中使用因式分解假设,我们构建了一个可以从时间序列基因表达数据中重建 TF 活性谱和调节类型的框架。我们在一个简单但非平凡的合成示例上证明了模型的可识别性,然后使用它来对酵母代谢过程中的转录控制提出非平凡的预测。

可用性

http://homepages.inf.ed.ac.uk/gsanguin/

联系方式

g.sanguinetti@ed.ac.uk

补充信息

补充数据可在“Bioinformatics”在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验