Institute for Pharmaceutical Biology, TU Braunschweig, Braunschweig, Germany.
PLoS One. 2010 May 3;5(5):e10435. doi: 10.1371/journal.pone.0010435.
Insects experience a wide array of chemical pressures from plant allelochemicals and pesticides and have developed several effective counterstrategies to cope with such toxins. Among these, cytochrome P450 monooxygenases are crucial in plant-insect interactions. Flavin-dependent monooxygenases (FMOs) seem not to play a central role in xenobiotic detoxification in insects, in contrast to mammals. However, the previously identified senecionine N-oxygenase of the arctiid moth Tyria jacobaeae (Lepidoptera) indicates that FMOs have been recruited during the adaptation of this insect to plants that accumulate toxic pyrrolizidine alkaloids. Identification of related FMO-like sequences of various arctiids and other Lepidoptera and their combination with expressed sequence tag (EST) data and sequences emerging from the Bombyx mori genome project show that FMOs in Lepidoptera form a gene family with three members (FMO1 to FMO3). Phylogenetic analyses suggest that FMO3 is only distantly related to lepidopteran FMO1 and FMO2 that originated from a more recent gene duplication event. Within the FMO1 gene cluster, an additional gene duplication early in the arctiid lineage provided the basis for the evolution of the highly specific biochemical, physiological, and behavioral adaptations of these butterflies to pyrrolizidine-alkaloid-producing plants. The genes encoding pyrrolizidine-alkaloid-N-oxygenizing enzymes (PNOs) are transcribed in the fat body and the head of the larvae. An N-terminal signal peptide mediates the transport of the soluble proteins into the hemolymph where PNOs efficiently convert pro-toxic pyrrolizidine alkaloids into their non-toxic N-oxide derivatives. Heterologous expression of a PNO of the generalist arctiid Grammia geneura produced an N-oxygenizing enzyme that shows noticeably expanded substrate specificity compared with the related enzyme of the specialist Tyria jacobaeae. The data about the evolution of FMOs within lepidopteran insects and the functional characterization of a further member of this enzyme family shed light on this almost uncharacterized detoxification system in insects.
昆虫会受到植物化感物质和杀虫剂等多种化学压力的影响,因此已经发展出几种有效的应对策略来应对这些毒素。在这些策略中,细胞色素 P450 单加氧酶在植物与昆虫的相互作用中起着至关重要的作用。与哺乳动物不同的是,黄素依赖性单加氧酶(FMO)似乎在昆虫中外源生物解毒中不起核心作用。然而,先前鉴定的天蛾科 Tyria jacobaeae(鳞翅目)的 senecionine N-加氧酶表明,在这种昆虫适应积累有毒吡咯里西啶生物碱的植物的过程中,FMO 已经被招募。鉴定各种天蛾科和其他鳞翅目昆虫的相关 FMO 样序列,并将其与表达序列标签(EST)数据和家蚕基因组计划中出现的序列相结合,表明鳞翅目 FMO 形成一个具有三个成员(FMO1 至 FMO3)的基因家族。系统发育分析表明,FMO3 与鳞翅目 FMO1 和 FMO2 的亲缘关系较远,而 FMO1 和 FMO2 起源于更近的基因复制事件。在 FMO1 基因簇内,天蛾科早期的另一次基因复制为这些蝴蝶对产生吡咯里西啶生物碱的植物的高度特异性生化、生理和行为适应的进化提供了基础。编码吡咯里西啶生物碱-N-加氧酶(PNO)的基因在幼虫的脂肪体和头部转录。一个 N 端信号肽介导可溶性蛋白进入血液,在血液中 PNO 有效地将前毒性吡咯里西啶生物碱转化为非毒性 N-氧化物衍生物。对一般性天蛾科 Grammia geneura 的 PNO 进行异源表达,产生了一种 N-加氧酶,与天蛾科 Tyria jacobaeae 的相关酶相比,该酶的底物特异性明显扩大。关于 FMO 在鳞翅目昆虫中的进化以及该酶家族的另一个成员的功能特征的这些数据,阐明了昆虫中这个几乎未被描述的解毒系统。