Developmental Biology Unit UMR 7009, UPMC (University of Paris 06), 75015 Paris, France.
Development. 2010 Jun;137(12):2011-21. doi: 10.1242/dev.047845. Epub 2010 May 12.
Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.
有丝分裂纺锤体相对于皮质极性线索的取向在不对称细胞分裂(ACD)过程中产生具有分子差异的子细胞。然而,在 ACD 过程中,直到开始褶皱之前,皮质极性线索如何调节有丝分裂纺锤体的取向仍然未知。在海鞘中,皮质中心体吸引体(CAB)产生三个连续的不等分裂,并在 8-64 细胞阶段的生殖细胞前体中不对称分离 40 个局部细胞质/PEM RNA。通过将快速 4D 共聚焦荧光成像与基因沉默和经典分裂球分离实验相结合,我们表明纺锤体重定位机制从前期开始活跃,直到在 B5.2 细胞中开始褶皱的后期。我们表明,植物极最多的纺锤体极/中心体在前期被吸引到 CAB,导致纺锤体在靠近皮质的位置不对称地定位。接下来,在后期,相反的纺锤体极/中心体被吸引到与相邻 B5.1 分裂球的边界,导致纺锤体旋转(每分钟 10 度)和迁移(每分钟 3 微米)。丝状肌动蛋白和质膜的动态 4D 荧光成像表明,切割皱襞的精确取向是由第二阶段旋转纺锤体位移决定的。此外,在成对的分离 B5.2 分裂球中,第二阶段的旋转纺锤体位移丢失了。最后,PEM1 的敲低,一种在 CAB 中定位且在 B5.2 细胞中不等分裂所必需的蛋白质,完全使纺锤体取向随机化。总之,这些数据表明,在有丝分裂过程中,两个独立的机制负责纺锤体定位,导致在海鞘中产生生殖谱系的细胞中 ACD 期间切割皱襞的精确取向。