Suppr超能文献

MAG 和 OMgp 与 Nogo-A 协同作用,限制脊髓损伤后的轴突生长和神经恢复。

MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma.

机构信息

Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut 06536, USA.

出版信息

J Neurosci. 2010 May 19;30(20):6825-37. doi: 10.1523/JNEUROSCI.6239-09.2010.

Abstract

Functional recovery after adult CNS damage is limited in part by myelin inhibitors of axonal regrowth. Three molecules, Nogo-A, MAG, and OMgp, are produced by oligodendrocytes and share neuronal receptor mechanisms through NgR1 and PirB. While each has an axon-inhibitory role in vitro, their in vivo interactions and relative potencies have not been defined. Here, we compared mice singly, doubly, or triply mutant for these three myelin inhibitor proteins. The myelin extracted from Nogo-A mutant mice is less inhibitory for axons than is that from wild-type mice, but myelin lacking MAG and OMgp is indistinguishable from control. However, myelin lacking all three inhibitors is less inhibitory than Nogo-A-deficient myelin, uncovering a redundant and synergistic role for all three proteins in axonal growth inhibition. Spinal cord injury studies revealed an identical in vivo hierarchy of these three myelin proteins. Loss of Nogo-A allows corticospinal and raphespinal axon growth above and below the injury, as well as greater behavioral recovery than in wild-type or heterozygous mutant mice. In contrast, deletion of MAG and OMgp stimulates neither axonal growth nor enhanced locomotion. The triple-mutant mice exhibit greater axonal growth and improved locomotion, consistent with a principal role for Nogo-A and synergistic actions for MAG and OMgp, presumably through shared receptors. These data support the hypothesis that targeting all three myelin ligands, as with NgR1 decoy receptor, provides the optimal chance for overcoming myelin inhibition and improving neurological function.

摘要

成人中枢神经系统损伤后的功能恢复受到轴突再生的髓鞘抑制剂的限制。三种分子,Nogo-A、MAG 和 OMgp,由少突胶质细胞产生,并通过 NgR1 和 PirB 共享神经元受体机制。虽然它们在体外都具有轴突抑制作用,但它们在体内的相互作用和相对效力尚未确定。在这里,我们比较了这三种髓鞘抑制剂蛋白单一、双重或三重突变的小鼠。与野生型小鼠相比,Nogo-A 突变小鼠提取的髓鞘对轴突的抑制作用较弱,但缺乏 MAG 和 OMgp 的髓鞘与对照无异。然而,缺乏所有三种抑制剂的髓鞘的抑制作用弱于 Nogo-A 缺陷型髓鞘,揭示了所有三种蛋白在轴突生长抑制中具有冗余和协同作用。脊髓损伤研究揭示了这三种髓鞘蛋白在体内的相同层次结构。Nogo-A 的缺失允许皮质脊髓和中缝脊髓轴突在损伤上方和下方生长,并比野生型或杂合突变型小鼠具有更好的行为恢复。相比之下,MAG 和 OMgp 的缺失既不能刺激轴突生长,也不能增强运动。三重突变小鼠表现出更大的轴突生长和改善的运动能力,这与 Nogo-A 的主要作用和 MAG 和 OMgp 的协同作用一致,可能通过共享受体。这些数据支持了这样一种假设,即靶向所有三种髓鞘配体,如 NgR1 诱饵受体,提供了克服髓鞘抑制和改善神经功能的最佳机会。

相似文献

1
MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma.
J Neurosci. 2010 May 19;30(20):6825-37. doi: 10.1523/JNEUROSCI.6239-09.2010.
3
Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury.
Mol Cell Neurosci. 2008 Oct;39(2):258-67. doi: 10.1016/j.mcn.2008.07.004. Epub 2008 Jul 18.
4
Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice.
Neuron. 2010 Jun 10;66(5):663-70. doi: 10.1016/j.neuron.2010.05.002.
5
Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity.
J Neurosci. 2010 Sep 15;30(37):12432-45. doi: 10.1523/JNEUROSCI.0895-10.2010.
8
Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth.
Nature. 2002 Jun 27;417(6892):941-4. doi: 10.1038/nature00867. Epub 2002 Jun 16.
10
PirB is a functional receptor for myelin inhibitors of axonal regeneration.
Science. 2008 Nov 7;322(5903):967-70. doi: 10.1126/science.1161151.

引用本文的文献

1
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
2
Traumatic Spinal Cord Injury: Review of the Literature.
J Clin Med. 2025 May 22;14(11):3649. doi: 10.3390/jcm14113649.
4
A bibliometric analysis of the top 100 most cited articles on corticospinal tract regeneration from 2004 to 2024.
Front Neurosci. 2025 Jan 28;18:1509850. doi: 10.3389/fnins.2024.1509850. eCollection 2024.
5
Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies.
CNS Neurosci Ther. 2024 Dec;30(12):1-15. doi: 10.1111/cns.70193.
6
Progression of mesenchymal stem cell regulation on imbalanced microenvironment after spinal cord injury.
Stem Cell Res Ther. 2024 Oct 1;15(1):343. doi: 10.1186/s13287-024-03914-x.
7
Astrocyte-Neuron Interactions in Spinal Cord Injury.
Adv Neurobiol. 2024;39:213-231. doi: 10.1007/978-3-031-64839-7_9.
8
Advances of Genome Editing with CRISPR/Cas9 in Neurodegeneration: The Right Path towards Therapy.
Biomedicines. 2023 Dec 17;11(12):3333. doi: 10.3390/biomedicines11123333.
10
Inflammatory Mediators of Axon Regeneration in the Central and Peripheral Nervous Systems.
Int J Mol Sci. 2023 Oct 19;24(20):15359. doi: 10.3390/ijms242015359.

本文引用的文献

1
Reassessment of corticospinal tract regeneration in Nogo-deficient mice.
J Neurosci. 2009 Jul 8;29(27):8649-54. doi: 10.1523/JNEUROSCI.1864-09.2009.
4
5
PirB is a functional receptor for myelin inhibitors of axonal regeneration.
Science. 2008 Nov 7;322(5903):967-70. doi: 10.1126/science.1161151.
6
Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glycoprotein (OMgp) null mice after spinal cord injury.
Mol Cell Neurosci. 2008 Oct;39(2):258-67. doi: 10.1016/j.mcn.2008.07.004. Epub 2008 Jul 18.
7
Nogo-A and myelin-associated glycoprotein differently regulate oligodendrocyte maturation and myelin formation.
J Neurosci. 2008 Jul 16;28(29):7435-44. doi: 10.1523/JNEUROSCI.0727-08.2008.
8
Descending pathways in motor control.
Annu Rev Neurosci. 2008;31:195-218. doi: 10.1146/annurev.neuro.31.060407.125547.
9
Netrin-1 is a novel myelin-associated inhibitor to axon growth.
J Neurosci. 2008 Jan 30;28(5):1099-108. doi: 10.1523/JNEUROSCI.4906-07.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验