Wang Mingyi, Augusto Benedito Vagner, Xuechun Zhao Patrick, Udvardi Michael
Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., 2510 Sam Noble Parkway, Ardmore, OK 73401, USA.
Mol Biosyst. 2010 Jun;6(6):988-98. doi: 10.1039/b917571g. Epub 2010 Feb 19.
Recently, simplified graphical modeling approaches based on low-order conditional (in-)dependence calculations have received attention because of their potential to model gene regulatory networks. Such methods are able to reconstruct large-scale gene networks with a small number of experimental measurements, at minimal computational cost. However, unlike Bayesian networks, current low-order graphical models provide no means to distinguish between cause and effect in gene regulatory relationships. To address this problem, we developed a low-order constraint-based algorithm for gene regulatory network inference. The method is capable of inferring causal directions using limited-order conditional independence tests and provides a computationally-feasible way to analyze high-dimensional datasets while maintaining high reliability. To assess the performance of our algorithm, we compared it to several existing graphical models: relevance networks; graphical Gaussian models; ARACNE; Bayesian networks; and the classical constraint-based algorithm, using realistic synthetic datasets. Furthermore, we applied our algorithm to real microarray data from Escherichia coli Affymetrix arrays and validated the results by comparison to known regulatory interactions collected in RegulonDB. The algorithm was found to be both effective and efficient at reconstructing gene regulatory networks from microarray data.
最近,基于低阶条件(非)依赖计算的简化图形建模方法受到了关注,因为它们具有对基因调控网络进行建模的潜力。此类方法能够以最少的计算成本,通过少量实验测量来重建大规模基因网络。然而,与贝叶斯网络不同,当前的低阶图形模型无法区分基因调控关系中的因果关系。为了解决这个问题,我们开发了一种基于低阶约束的基因调控网络推理算法。该方法能够使用有限阶条件独立性检验来推断因果方向,并提供一种计算上可行的方式来分析高维数据集,同时保持高可靠性。为了评估我们算法的性能,我们使用现实的合成数据集将其与几种现有的图形模型进行了比较:相关网络;图形高斯模型;ARACNE;贝叶斯网络;以及经典的基于约束的算法。此外,我们将我们的算法应用于来自大肠杆菌Affymetrix芯片的真实微阵列数据,并通过与RegulonDB中收集的已知调控相互作用进行比较来验证结果。结果发现该算法在从微阵列数据重建基因调控网络方面既有效又高效。