Suppr超能文献

拮抗 Nodal/Vg1 和 BMP 信号介导基干脊索动物文昌鱼胚胎的轴向模式形成。

Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus.

机构信息

Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.

出版信息

Dev Biol. 2010 Aug 1;344(1):377-89. doi: 10.1016/j.ydbio.2010.05.016. Epub 2010 May 19.

Abstract

The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites. However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination. Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity. Knockdown and gain-of-function experiments show that these pathways act in opposition to one another. Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution.

摘要

文昌鱼这种基干脊索动物在拥有背侧中空的神经索、脊索和体节方面与脊椎动物相似。然而,文昌鱼缺乏广泛的基因重复,其胚胎较小,通过简单的内陷进行原肠胚形成。在这里,我们证明 Nodal/Vg1 信号从早期卵裂到原肠胚阶段发挥作用,以指定和维持背侧/前侧发育,而从早期原肠胚阶段开始,BMP 信号促进腹侧/后侧身份。敲低和功能获得实验表明,这些途径相互拮抗。这些途径的信号由包括 Chordin、Cerberus 和 Blimp1 在内的背侧和/或前侧表达的基因调节。在爪蟾中的过表达和/或报告基因实验表明,这些蛋白的功能在文昌鱼和脊椎动物之间是保守的。因此,涉及拮抗 Nodal 和 BMP 信号的轴向模式形成的基本遗传机制存在于文昌鱼中,可能也存在于文昌鱼和脊椎动物的共同祖先中,甚至更早存在于后口动物进化中。

相似文献

1
Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus.
Dev Biol. 2010 Aug 1;344(1):377-89. doi: 10.1016/j.ydbio.2010.05.016. Epub 2010 May 19.
2
Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
Dev Biol. 2002 Jan 15;241(2):209-28. doi: 10.1006/dbio.2001.0503.
4
Axial patterning in cephalochordates and the evolution of the organizer.
Nature. 2007 Feb 8;445(7128):613-7. doi: 10.1038/nature05472. Epub 2007 Jan 21.
5
Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
PLoS Biol. 2009 Nov;7(11):e1000248. doi: 10.1371/journal.pbio.1000248. Epub 2009 Nov 24.
6
Dorsoventral patterning in hemichordates: insights into early chordate evolution.
PLoS Biol. 2006 Sep;4(9):e291. doi: 10.1371/journal.pbio.0040291.
7
Interplay between Lefty and Nodal signaling is essential for the organizer and axial formation in amphioxus embryos.
Dev Biol. 2019 Dec 1;456(1):63-73. doi: 10.1016/j.ydbio.2019.08.006. Epub 2019 Aug 13.
8
The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus.
Dev Biol. 2018 Feb 1;434(1):164-174. doi: 10.1016/j.ydbio.2017.12.004. Epub 2017 Dec 7.
9
Expression of somite segmentation genes in amphioxus: a clock without a wavefront?
Dev Genes Evol. 2008 Dec;218(11-12):599-611. doi: 10.1007/s00427-008-0257-5. Epub 2008 Oct 21.

引用本文的文献

1
Deep homology of a cis-regulatory syntax and the evolutionary origin of the notochord.
Sci Adv. 2025 Jul 25;11(30):eadw3307. doi: 10.1126/sciadv.adw3307.
2
An ancient apical patterning system sets the position of the forebrain in chordates.
Sci Adv. 2025 Jan 24;11(4):eadq4731. doi: 10.1126/sciadv.adq4731.
3
Cell type and regulatory analysis in amphioxus illuminates evolutionary origin of the vertebrate head.
Nat Commun. 2024 Oct 14;15(1):8859. doi: 10.1038/s41467-024-52938-7.
5
Highly conserved and extremely evolvable: BMP signalling in secondary axis patterning of Cnidaria and Bilateria.
Dev Genes Evol. 2024 Jun;234(1):1-19. doi: 10.1007/s00427-024-00714-4. Epub 2024 Mar 13.
7
Amphioxus as a model to study the evolution of development in chordates.
Elife. 2023 Sep 18;12:e87028. doi: 10.7554/eLife.87028.
8
Identification of Nodal-dependent enhancer of amphioxus Chordin sufficient to drive gene expression into the chordate dorsal organizer.
Dev Genes Evol. 2022 Dec;232(5-6):137-145. doi: 10.1007/s00427-022-00698-z. Epub 2022 Nov 14.
9
Highly distinct genetic programs for peripheral nervous system formation in chordates.
BMC Biol. 2022 Jun 27;20(1):152. doi: 10.1186/s12915-022-01355-7.
10
Evolution and loss of ß-catenin and TCF-dependent axis specification in insects.
Curr Opin Insect Sci. 2022 Apr;50:100877. doi: 10.1016/j.cois.2022.100877. Epub 2022 Jan 31.

本文引用的文献

3
A revised fate map for amphioxus and the evolution of axial patterning in chordates.
Integr Comp Biol. 2007 Sep;47(3):360-72. doi: 10.1093/icb/icm064. Epub 2007 Jul 26.
6
Mitochondria and metazoan epigenesis.
Semin Cell Dev Biol. 2009 May;20(3):321-9. doi: 10.1016/j.semcdb.2009.02.002. Epub 2009 Feb 13.
7
Visualisation and quantification of morphogen gradient formation in the zebrafish.
PLoS Biol. 2009 May;7(5):e1000101. doi: 10.1371/journal.pbio.1000101. Epub 2009 May 5.
8
Chordin is required for neural but not axial development in sea urchin embryos.
Dev Biol. 2009 Apr 15;328(2):221-33. doi: 10.1016/j.ydbio.2009.01.027. Epub 2009 Jan 29.
9
Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2.
Dev Biol. 2009 Jun 1;330(1):123-30. doi: 10.1016/j.ydbio.2009.03.017. Epub 2009 Mar 27.
10
Nodal signalling is involved in left-right asymmetry in snails.
Nature. 2009 Feb 19;457(7232):1007-11. doi: 10.1038/nature07603. Epub 2008 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验