Suppr超能文献

浦肯野纤维单细胞电生理学的计算模型:对长 QT 综合征的影响。

A computational model of Purkinje fibre single cell electrophysiology: implications for the long QT syndrome.

机构信息

Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.

出版信息

J Physiol. 2010 Jul 15;588(Pt 14):2643-55. doi: 10.1113/jphysiol.2010.187328. Epub 2010 May 24.

Abstract

Computer modelling has emerged as a particularly useful tool in understanding the physiology and pathophysiology of cardiac tissues. Models of ventricular, atrial and nodal tissue have evolved and include detailed ion channel kinetics and intercellular Ca(2+) handling. Purkinje fibre cells play a central role in the electrophysiology of the heart and in the genesis of cardiac arrhythmias. In this study, a new computational model has been constructed that incorporates the major membrane currents that have been isolated in recent experiments using Purkinje fibre cells. The model, which integrates mathematical models of human ion channels based on detailed biophysical studies of their kinetic and voltage-dependent properties, recapitulates distinct electrophysiological characteristics unique to Purkinje fibre cells compared to neighbouring ventricular myocytes. These characteristics include automaticity, hyperpolarized voltage range of the action potential plateau potential, and prolonged action potential duration. Simulations of selective ion channel blockade reproduce responses to pharmacological challenges characteristic of isolated Purkinje fibres in vitro, and importantly, the model predicts that Purkinje fibre cells are prone to severe arrhythmogenic activity in patients harbouring long QT syndrome 3 but much less so for other common forms of long QT. This new Purkinje cellular model can be a useful tool to study tissue-specific drug interactions and the effects of disease-related ion channel dysfunction on the cardiac conduction system.

摘要

计算机建模已成为理解心脏组织生理学和病理生理学的一种特别有用的工具。心室、心房和结组织的模型已经发展起来,包括详细的离子通道动力学和细胞间 Ca(2+)处理。浦肯野纤维细胞在心脏的电生理学和心律失常的发生中起着核心作用。在这项研究中,构建了一个新的计算模型,该模型整合了最近使用浦肯野纤维细胞进行的实验中分离出的主要膜电流。该模型整合了基于对其动力学和电压依赖性特性的详细生物物理研究的人类离子通道的数学模型,再现了与相邻心室肌细胞相比,浦肯野纤维细胞特有的独特电生理特性。这些特性包括自动性、动作电位平台期的超极化电压范围和动作电位持续时间延长。选择性离子通道阻断的模拟再现了体外分离的浦肯野纤维对药理学挑战的反应,重要的是,该模型预测长 QT 综合征 3 的患者中浦肯野纤维细胞容易发生严重的致心律失常活动,而其他常见形式的长 QT 则不然。这种新的浦肯野细胞模型可以成为研究组织特异性药物相互作用和疾病相关离子通道功能障碍对心脏传导系统影响的有用工具。

相似文献

1
A computational model of Purkinje fibre single cell electrophysiology: implications for the long QT syndrome.
J Physiol. 2010 Jul 15;588(Pt 14):2643-55. doi: 10.1113/jphysiol.2010.187328. Epub 2010 May 24.
2
Realistic cardiac electrophysiology modelling: are we just a heartbeat away?
J Physiol. 2010 Aug 1;588(Pt 15):2689. doi: 10.1113/jphysiol.2010.194357.
3
Modeling tissue- and mutation- specific electrophysiological effects in the long QT syndrome: role of the Purkinje fiber.
PLoS One. 2014 Jun 3;9(6):e97720. doi: 10.1371/journal.pone.0097720. eCollection 2014.
4
Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart.
Prog Biophys Mol Biol. 2006 Jan-Apr;90(1-3):414-43. doi: 10.1016/j.pbiomolbio.2005.06.006.
6
Choice of cardiac tissue in vitro plays an important role in assessing the risk of drug-induced cardiac arrhythmias in human: beyond QT prolongation.
J Pharmacol Toxicol Methods. 2008 Jan-Feb;57(1):1-8. doi: 10.1016/j.vascn.2007.06.005. Epub 2007 Jul 17.
7
The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis.
J Cardiovasc Pharmacol. 2001 May;37(5):607-18. doi: 10.1097/00005344-200105000-00012.
8
TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres.
J Physiol. 2016 Jan 15;594(2):295-306. doi: 10.1113/JP271347. Epub 2015 Dec 14.
9
Cellular mechanism of the QT prolongation induced by sulpiride.
Int J Toxicol. 2009 May-Jun;28(3):207-12. doi: 10.1177/1091581809337261.
10
Action potential experiments complete hERG assay and QT-interval measurements in cardiac preclinical studies.
J Pharmacol Toxicol Methods. 2007 Sep-Oct;56(2):159-70. doi: 10.1016/j.vascn.2007.03.009. Epub 2007 May 23.

引用本文的文献

1
From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling.
iScience. 2024 Nov 5;27(12):111322. doi: 10.1016/j.isci.2024.111322. eCollection 2024 Dec 20.
2
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
3
Long-term memory in Staphylococcus aureus α-hemolysin ion channel kinetics.
Eur Biophys J. 2023 Nov;52(8):661-671. doi: 10.1007/s00249-023-01675-8. Epub 2023 Aug 5.
4
Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair.
Curr Cardiol Rep. 2021 May 29;23(6):72. doi: 10.1007/s11886-021-01498-z.
5
Reduced Na current in Purkinje fibers explains cardiac conduction defects and arrhythmias in Duchenne muscular dystrophy.
Am J Physiol Heart Circ Physiol. 2020 Jun 1;318(6):H1436-H1440. doi: 10.1152/ajpheart.00224.2020. Epub 2020 May 8.
6
Human Purkinje in silico model enables mechanistic investigations into automaticity and pro-arrhythmic abnormalities.
J Mol Cell Cardiol. 2020 May;142:24-38. doi: 10.1016/j.yjmcc.2020.04.001. Epub 2020 Apr 3.
7
Rapid Characterization of hERG Channel Kinetics II: Temperature Dependence.
Biophys J. 2019 Dec 17;117(12):2455-2470. doi: 10.1016/j.bpj.2019.07.030. Epub 2019 Jul 25.
8
A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research.
Front Physiol. 2018 Jul 20;9:958. doi: 10.3389/fphys.2018.00958. eCollection 2018.
9
Early somatic mosaicism is a rare cause of long-QT syndrome.
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11555-11560. doi: 10.1073/pnas.1607187113. Epub 2016 Sep 28.
10
Purkinje Cells as Sources of Arrhythmias in Long QT Syndrome Type 3.
Sci Rep. 2015 Aug 20;5:13287. doi: 10.1038/srep13287.

本文引用的文献

1
Cardiac cell modelling: observations from the heart of the cardiac physiome project.
Prog Biophys Mol Biol. 2011 Jan;104(1-3):2-21. doi: 10.1016/j.pbiomolbio.2010.03.002. Epub 2010 Mar 18.
3
Mathematical models of the electrical action potential of Purkinje fibre cells.
Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2225-55. doi: 10.1098/rsta.2008.0283.
4
Modelling and measuring electromechanical coupling in the rat heart.
Exp Physiol. 2009 May;94(5):529-40. doi: 10.1113/expphysiol.2008.045880. Epub 2009 Feb 13.
5
The Purkinje cell; 2008 style.
J Mol Cell Cardiol. 2008 Nov;45(5):617-24. doi: 10.1016/j.yjmcc.2008.08.001. Epub 2008 Aug 8.
6
Modeling of the adrenergic response of the human IKs current (hKCNQ1/hKCNE1) stably expressed in HEK-293 cells.
Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H1867-81. doi: 10.1152/ajpheart.433.2008. Epub 2008 Aug 29.
7
Genesis and regulation of the heart automaticity.
Physiol Rev. 2008 Jul;88(3):919-82. doi: 10.1152/physrev.00018.2007.
8
Ionic mechanisms of endogenous bursting in CA3 hippocampal pyramidal neurons: a model study.
PLoS One. 2008 Apr 30;3(4):e2056. doi: 10.1371/journal.pone.0002056.
9
The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1364-8. doi: 10.1073/pnas.0708153105. Epub 2008 Jan 23.
10
A reduced differential model of the electrical activity of cardiac Purkinje fibres.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4167-70. doi: 10.1109/IEMBS.2006.259468.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验