Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
J Physiol. 2010 Jul 15;588(Pt 14):2643-55. doi: 10.1113/jphysiol.2010.187328. Epub 2010 May 24.
Computer modelling has emerged as a particularly useful tool in understanding the physiology and pathophysiology of cardiac tissues. Models of ventricular, atrial and nodal tissue have evolved and include detailed ion channel kinetics and intercellular Ca(2+) handling. Purkinje fibre cells play a central role in the electrophysiology of the heart and in the genesis of cardiac arrhythmias. In this study, a new computational model has been constructed that incorporates the major membrane currents that have been isolated in recent experiments using Purkinje fibre cells. The model, which integrates mathematical models of human ion channels based on detailed biophysical studies of their kinetic and voltage-dependent properties, recapitulates distinct electrophysiological characteristics unique to Purkinje fibre cells compared to neighbouring ventricular myocytes. These characteristics include automaticity, hyperpolarized voltage range of the action potential plateau potential, and prolonged action potential duration. Simulations of selective ion channel blockade reproduce responses to pharmacological challenges characteristic of isolated Purkinje fibres in vitro, and importantly, the model predicts that Purkinje fibre cells are prone to severe arrhythmogenic activity in patients harbouring long QT syndrome 3 but much less so for other common forms of long QT. This new Purkinje cellular model can be a useful tool to study tissue-specific drug interactions and the effects of disease-related ion channel dysfunction on the cardiac conduction system.
计算机建模已成为理解心脏组织生理学和病理生理学的一种特别有用的工具。心室、心房和结组织的模型已经发展起来,包括详细的离子通道动力学和细胞间 Ca(2+)处理。浦肯野纤维细胞在心脏的电生理学和心律失常的发生中起着核心作用。在这项研究中,构建了一个新的计算模型,该模型整合了最近使用浦肯野纤维细胞进行的实验中分离出的主要膜电流。该模型整合了基于对其动力学和电压依赖性特性的详细生物物理研究的人类离子通道的数学模型,再现了与相邻心室肌细胞相比,浦肯野纤维细胞特有的独特电生理特性。这些特性包括自动性、动作电位平台期的超极化电压范围和动作电位持续时间延长。选择性离子通道阻断的模拟再现了体外分离的浦肯野纤维对药理学挑战的反应,重要的是,该模型预测长 QT 综合征 3 的患者中浦肯野纤维细胞容易发生严重的致心律失常活动,而其他常见形式的长 QT 则不然。这种新的浦肯野细胞模型可以成为研究组织特异性药物相互作用和疾病相关离子通道功能障碍对心脏传导系统影响的有用工具。