Definiens AG, Trappentreustrasse 1, 80339 München, Germany.
Int J Comput Assist Radiol Surg. 2011 Jan;6(1):127-34. doi: 10.1007/s11548-010-0486-8. Epub 2010 May 26.
We present a new approach for computer-aided detection and diagnosis in mammography based on Cognition Network Technology (CNT). Originally designed for image processing, CNT has been extended to also perform context- and knowledge-driven analysis of tabular data. For the first time using this technology, an application was created and evaluated for fully automatic searching of patient cases from a reference database of verified findings. The application aims to support radiologists in providing cases of similarity and relevance to a given query case. It adopts an extensible and knowledge-driven concept as a similarity measure.
As a preprocessing step, all input images from more than 400 patients were fully automatically segmented and the resulting objects classified--this includes the complete breast shape, the position of the mammilla, the pectoral muscle, and various potential candidate objects for suspicious mass lesions. For the similarity search, collections of object properties and metadata from many patients were combined into a single table analysis project. Extended CNT allows for a convenient implementation of knowledge-based structures, for example, by meaningfully linking detected objects in different breast views that might represent identical lesions. Objects from alternative segmentation methods are also be considered, so as to collectively become a sufficient set of base-objects for identifying suspicious mass lesions.
For 80% of 112 patient cases with suspicious lesions, the system correctly identified at least one corresponding mass lesion as an object of interest. In this database, consisting of 1,024 images from a total of 303 patients, an average of 0.66 false-positive objects per image were detected. An additional testing database contained 480 images from 120 patients, 15 of whom were annotated with suspicious mass lesions. Here, 47% (7 out of 15) of these were detected automatically with 1.13 false-positive objects per image. A diagnosis is predicted for each patient case by applying a majority vote from the reference findings of the ten most similar cases. Two separate evaluation scenarios suggest a fraction of correct predictions of respectively 79 and 76%.
Cognition Network Technology was extended to process table data, making it possible to access and relate records from different images and non-image sources, such as demographic patient data or parameters from clinical examinations. A prototypal application enables efficient searching of a patient and image database for similar patient cases. Using concepts of knowledge-driven configuration and flexible extension, the application illustrates a path to a new generation of future CAD systems.
我们提出了一种基于认知网络技术(CNT)的计算机辅助检测和诊断新方法。最初为图像处理而设计的 CNT 已扩展到对表格数据进行上下文和知识驱动的分析。首次使用这项技术,我们创建并评估了一个应用程序,用于从验证结果的参考数据库中自动搜索患者病例。该应用程序旨在支持放射科医生提供与给定查询病例相似和相关的病例。它采用了一种可扩展的知识驱动概念作为相似性度量。
作为预处理步骤,来自 400 多名患者的所有输入图像都被全自动分割,得到的对象被分类 - 这包括完整的乳房形状、乳头位置、胸肌以及各种可能的可疑肿块病变候选对象。为了进行相似性搜索,来自许多患者的对象属性和元数据集合被组合到一个单一的表分析项目中。扩展的 CNT 允许方便地实现基于知识的结构,例如,通过有意义地链接不同乳房视图中可能代表相同病变的检测到的对象。还考虑了来自替代分割方法的对象,以便共同成为识别可疑肿块病变的充分基础对象集。
对于 112 个可疑病变患者病例中的 80%,系统正确地识别了至少一个对应的肿块病变作为感兴趣的对象。在这个由来自 303 名患者的总共 1024 张图像组成的数据库中,每张图像平均检测到 0.66 个假阳性对象。一个额外的测试数据库包含来自 120 名患者的 480 张图像,其中 15 名被标记为可疑肿块病变。在这里,自动检测到其中的 47%(15 个中的 7 个),每张图像有 1.13 个假阳性对象。为每个患者病例应用来自十个最相似病例的参考发现的多数投票来预测诊断。两个单独的评估场景表明,正确预测的比例分别为 79%和 76%。
CNT 已扩展到处理表格数据,从而可以访问和关联来自不同图像和非图像源的记录,例如人口统计学患者数据或临床检查参数。原型应用程序能够有效地搜索患者和图像数据库以查找相似的患者病例。该应用程序使用知识驱动配置和灵活扩展的概念,为新一代未来 CAD 系统展示了一条道路。