Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA.
Electrophoresis. 2010 Jun;31(12):2080-8. doi: 10.1002/elps.201000060.
In this study, we report the design of a microchip-based hydraulic pump that comprises three glass conduits arranged in a T-geometry, one of which has a 2 mm long segment shallower (0.5-3 microm in depth) than the remaining 15 microm deep microfluidic network. Upon application of an electric field across this microchannel junction, a mismatch in EOF rate is introduced due to a differential in the fluid conductivity across the deep and shallow segments. Using the reported micropump, pressure-driven velocities up to 3.2 mm/s have been generated in a 15 microm deep separation channel for an applied voltage of 1.75 kV allowing us to operate under separation conditions that yield the minimum plate height. Moreover, we have shown that this flow velocity can be maximized by optimizing the depth in the shallow region of the T-geometry. Interestingly however, a simple theory accounting for fluid conductivity differences across microchannels of different depths significantly underestimates the pressure-driven velocities observed in our experiments. The Taylor dispersion coefficient in our system on the other hand compares well with the theoretical predictions reported in the literature. Finally, the functionality of our device has been demonstrated by implementing a reverse-phase chromatographic separation that was driven by the pressure-driven flow generated on-chip.
在这项研究中,我们报告了一种基于微芯片的液压泵的设计,该液压泵由三个玻璃导管组成,呈 T 型排列,其中一个 2 毫米长的段比其余 15 微米深的微流道网络浅(深度为 0.5-3 微米)。当在这个微通道结施加电场时,由于深段和浅段之间的流体电导率存在差异,会引入不同的电渗流速率。使用所报道的微泵,在 15 微米深的分离通道中,施加 1.75 kV 的电压,可产生高达 3.2 毫米/秒的压力驱动速度,从而使我们能够在产生最小板高的分离条件下运行。此外,我们已经表明,通过优化 T 型结构中浅区的深度,可以最大化这种流速。然而,有趣的是,一个简单的理论,该理论考虑了不同深度微通道之间的流体电导率差异,显著低估了我们实验中观察到的压力驱动速度。另一方面,我们系统中的泰勒扩散系数与文献中报道的理论预测非常吻合。最后,通过在芯片上产生的压力驱动流来驱动反相色谱分离,证明了我们设备的功能。