Suppr超能文献

DiGeorge 关键区域 8 二聚化结构域

Structure of the dimerization domain of DiGeorge critical region 8.

机构信息

Department of Biological Chemistry in David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA.

出版信息

Protein Sci. 2010 Jul;19(7):1354-65. doi: 10.1002/pro.414.

Abstract

Maturation of microRNAs (miRNAs, approximately 22nt) from long primary transcripts [primary miRNAs (pri-miRNAs)] is regulated during development and is altered in diseases such as cancer. The first processing step is a cleavage mediated by the Microprocessor complex containing the Drosha nuclease and the RNA-binding protein DiGeorge critical region 8 (DGCR8). We previously reported that dimeric DGCR8 binds heme and that the heme-bound DGCR8 is more active than the heme-free form. Here, we identified a conserved dimerization domain in DGCR8. Our crystal structure of this domain (residues 298-352) at 1.7 A resolution demonstrates a previously unknown use of a WW motif as a platform for extensive dimerization interactions. The dimerization domain of DGCR8 is embedded in an independently folded heme-binding domain and directly contributes to association with heme. Heme-binding-deficient DGCR8 mutants have reduced pri-miRNA processing activity in vitro. Our study provides structural and biochemical bases for understanding how dimerization and heme binding of DGCR8 may contribute to regulation of miRNA biogenesis.

摘要

miRNAs(约 22nt)从小的初始转录物[初级 miRNAs(pri-miRNAs)]成熟,这一过程在发育过程中受到调控,并在癌症等疾病中发生改变。第一个加工步骤是由 Microprocessor 复合物介导的切割,该复合物包含 Drosha 核酸酶和 RNA 结合蛋白 DiGeorge 关键区域 8(DGCR8)。我们之前报道过二聚体 DGCR8 结合血红素,并且血红素结合的 DGCR8 比血红素游离形式更活跃。在这里,我们在 DGCR8 中鉴定出一个保守的二聚化结构域。我们以 1.7Å分辨率获得该结构域(残基 298-352)的晶体结构,展示了 WW 基序作为广泛二聚化相互作用平台的先前未知用途。DGCR8 的二聚化结构域嵌入在一个独立折叠的血红素结合结构域中,并直接有助于与血红素的结合。体外血红素结合缺陷型 DGCR8 突变体的 pri-miRNA 加工活性降低。我们的研究为理解 DGCR8 的二聚化和血红素结合如何有助于 miRNA 生物发生的调控提供了结构和生化基础。

相似文献

1
Structure of the dimerization domain of DiGeorge critical region 8.
Protein Sci. 2010 Jul;19(7):1354-65. doi: 10.1002/pro.414.
2
Heme is involved in microRNA processing.
Nat Struct Mol Biol. 2007 Jan;14(1):23-9. doi: 10.1038/nsmb1182. Epub 2006 Dec 10.
3
The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.
J Biol Chem. 2013 Sep 13;288(37):26785-99. doi: 10.1074/jbc.M112.446880. Epub 2013 Jul 26.
4
Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8.
Protein Sci. 2012 Jun;21(6):797-808. doi: 10.1002/pro.2062. Epub 2012 Apr 23.
5
Processing of microRNA primary transcripts requires heme in mammalian cells.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1861-6. doi: 10.1073/pnas.1309915111. Epub 2014 Jan 21.
7
The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin.
Cell Rep. 2014 Jun 26;7(6):1994-2005. doi: 10.1016/j.celrep.2014.05.013. Epub 2014 Jun 6.
9
Primary microRNA processing assay reconstituted using recombinant Drosha and DGCR8.
Methods Mol Biol. 2014;1095:73-86. doi: 10.1007/978-1-62703-703-7_5.
10
Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing.
Nucleic Acids Res. 2006;34(16):4622-9. doi: 10.1093/nar/gkl458. Epub 2006 Sep 8.

引用本文的文献

1
ERH promotes primary microRNA processing beyond cluster assistance.
Nat Commun. 2025 Aug 25;16(1):7913. doi: 10.1038/s41467-025-63015-y.
2
3
The structural landscape of Microprocessor-mediated processing of pri-let-7 miRNAs.
Mol Cell. 2024 Nov 7;84(21):4175-4190.e6. doi: 10.1016/j.molcel.2024.09.008. Epub 2024 Oct 4.
4
A transcription-independent role for HIF-1α in modulating microprocessor assembly.
Nucleic Acids Res. 2024 Oct 28;52(19):11806-11821. doi: 10.1093/nar/gkae792.
5
ARGONAUTE2 Localizes to Sites of Sporocysts in the Schistosome-Infected Snail, .
Genes (Basel). 2024 Aug 3;15(8):1023. doi: 10.3390/genes15081023.
6
The structural landscape of Microprocessor mediated pri- miRNA processing.
bioRxiv. 2024 Aug 21:2024.05.09.593372. doi: 10.1101/2024.05.09.593372.
7
Regulation of Microprocessor assembly and localization via Pasha's WW domain in .
bioRxiv. 2024 Apr 23:2024.04.23.590772. doi: 10.1101/2024.04.23.590772.
8
Dynamic Protein-RNA recognition in primary MicroRNA processing.
Curr Opin Struct Biol. 2022 Oct;76:102442. doi: 10.1016/j.sbi.2022.102442. Epub 2022 Sep 5.
10
A Structural View of miRNA Biogenesis and Function.
Noncoding RNA. 2022 Jan 18;8(1):10. doi: 10.3390/ncrna8010010.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Causes and consequences of microRNA dysregulation in cancer.
Nat Rev Genet. 2009 Oct;10(10):704-14. doi: 10.1038/nrg2634.
5
Post-transcriptional control of DGCR8 expression by the Microprocessor.
RNA. 2009 Jun;15(6):1005-11. doi: 10.1261/rna.1591709. Epub 2009 Apr 21.
6
Mass spectrometry detection and characterization of noncovalent protein complexes.
Methods Mol Biol. 2009;492:273-82. doi: 10.1007/978-1-59745-493-3_16.
7
MicroRNAs: target recognition and regulatory functions.
Cell. 2009 Jan 23;136(2):215-33. doi: 10.1016/j.cell.2009.01.002.
8
Biogenesis of small RNAs in animals.
Nat Rev Mol Cell Biol. 2009 Feb;10(2):126-39. doi: 10.1038/nrm2632.
9
A three-dimensional view of the molecular machinery of RNA interference.
Nature. 2009 Jan 22;457(7228):405-12. doi: 10.1038/nature07755.
10
Posttranscriptional crossregulation between Drosha and DGCR8.
Cell. 2009 Jan 9;136(1):75-84. doi: 10.1016/j.cell.2008.10.053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验