Faculty of Arts and Sciences, Harvard University, Center for Brain Science, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11092-7. doi: 10.1073/pnas.0909615107. Epub 2010 May 28.
The explanation of higher neural processes requires an understanding of the dynamics of complex, spiking neural networks. So far, modeling studies have focused on networks with linear or sublinear dendritic input summation. However, recent single-neuron experiments have demonstrated strongly supralinear dendritic enhancement of synchronous inputs. What are the implications of this amplification for networks of neurons? Here, I show numerically and analytically that such networks can generate intermittent, strong increases of activity with high-frequency oscillations; the models developed predict the shape of these events and the oscillation frequency. As an example, for the hippocampal region CA1, events with 200-Hz oscillations are predicted. I argue that these dynamics provide a plausible explanation for experimentally observed sharp-wave/ripple events. High-frequency oscillations can involve the replay of spike patterns. The models suggest that these patterns may reflect underlying network structures.
高级神经过程的解释需要理解复杂的、尖峰神经元网络的动力学。到目前为止,建模研究主要集中在线性或次线性树突输入求和的网络上。然而,最近的单神经元实验已经证明了同步输入的强超线性树突增强。这种放大对神经元网络有什么影响?在这里,我通过数值和分析表明,这样的网络可以产生间歇性的、高频振荡的强烈活动增加;所开发的模型预测了这些事件的形状和振荡频率。作为一个例子,对于海马区 CA1,预测了具有 200-Hz 振荡的事件。我认为这些动力学为实验观察到的尖峰波/涟漪事件提供了一个合理的解释。高频振荡可能涉及尖峰模式的重放。模型表明,这些模式可能反映了潜在的网络结构。