Suppr超能文献

脊髓损伤会立即改变大脑的状态。

Spinal cord injury immediately changes the state of the brain.

机构信息

Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain.

出版信息

J Neurosci. 2010 Jun 2;30(22):7528-37. doi: 10.1523/JNEUROSCI.0379-10.2010.

Abstract

Spinal cord injury can produce extensive long-term reorganization of the cerebral cortex. Little is known, however, about the sequence of cortical events starting immediately after the lesion. Here we show that a complete thoracic transection of the spinal cord produces immediate functional reorganization in the primary somatosensory cortex of anesthetized rats. Besides the obvious loss of cortical responses to hindpaw stimuli (below the level of the lesion), cortical responses evoked by forepaw stimuli (above the level of the lesion) markedly increase. Importantly, these increased responses correlate with a slower and overall more silent cortical spontaneous activity, representing a switch to a network state of slow-wave activity similar to that observed during slow-wave sleep. The same immediate cortical changes are observed after reversible pharmacological block of spinal cord conduction, but not after sham. We conclude that the deafferentation due to spinal cord injury can immediately (within minutes) change the state of large cortical networks, and that this state change plays a critical role in the early cortical reorganization after spinal cord injury.

摘要

脊髓损伤会导致大脑皮层广泛而长期的重组。然而,对于损伤后立即发生的皮层事件序列,我们知之甚少。在这里,我们展示了完全的胸段脊髓横断会导致麻醉大鼠初级体感皮层立即发生功能重组。除了明显丧失对后足刺激(损伤以下水平)的皮层反应外,由前足刺激(损伤以上水平)引起的皮层反应显著增加。重要的是,这些增加的反应与较慢且整体更安静的皮层自发活动相关联,代表向类似于在慢波睡眠期间观察到的慢波活动网络状态的转变。在可逆的脊髓传导药理学阻断后也观察到相同的即刻皮层变化,但在假手术组中则没有。我们得出结论,脊髓损伤引起的去传入作用可以立即(在数分钟内)改变大皮层网络的状态,并且这种状态变化在脊髓损伤后的早期皮层重组中起着关键作用。

相似文献

1
Spinal cord injury immediately changes the state of the brain.
J Neurosci. 2010 Jun 2;30(22):7528-37. doi: 10.1523/JNEUROSCI.0379-10.2010.
2
Functional reorganization of the forepaw cortical representation immediately after thoracic spinal cord hemisection in rats.
Exp Neurol. 2014 Jul;257:19-24. doi: 10.1016/j.expneurol.2014.03.015. Epub 2014 Mar 28.
3
Reorganization of the intact somatosensory cortex immediately after spinal cord injury.
PLoS One. 2013 Jul 29;8(7):e69655. doi: 10.1371/journal.pone.0069655. Print 2013.
4
Dual Cortical Plasticity After Spinal Cord Injury.
Cereb Cortex. 2017 May 1;27(5):2926-2940. doi: 10.1093/cercor/bhw142.
6
Increased responses in the somatosensory thalamus immediately after spinal cord injury.
Neurobiol Dis. 2016 Mar;87:39-49. doi: 10.1016/j.nbd.2015.12.003. Epub 2015 Dec 17.
7
Cortical hyperexcitability in response to preserved spinothalamic inputs immediately after spinal cord hemisection.
Exp Neurol. 2011 Feb;227(2):252-63. doi: 10.1016/j.expneurol.2010.11.011. Epub 2010 Nov 17.
8
Slow-wave activity homeostasis in the somatosensory cortex after spinal cord injury.
Exp Neurol. 2019 Dec;322:113035. doi: 10.1016/j.expneurol.2019.113035. Epub 2019 Aug 22.
9
Cortical layer-specific modulation of neuronal activity after sensory deprivation due to spinal cord injury.
J Physiol. 2021 Oct;599(20):4643-4669. doi: 10.1113/JP281901. Epub 2021 Sep 28.
10
Cortical sensory map rearrangement after spinal cord injury: fMRI responses linked to Nogo signalling.
Brain. 2007 Nov;130(Pt 11):2951-61. doi: 10.1093/brain/awm237. Epub 2007 Oct 3.

引用本文的文献

3
Multi-target neural circuit reconstruction and enhancement in spinal cord injury.
Neural Regen Res. 2026 Mar 1;21(3):957-971. doi: 10.4103/NRR.NRR-D-24-00434. Epub 2025 Jan 29.
4
Influence of sports on cortical excitability in patients with spinal cord injury: a TMS study.
Front Med Technol. 2024 May 15;6:1297552. doi: 10.3389/fmedt.2024.1297552. eCollection 2024.
5
Improved Recovery of Complete Spinal Cord Transection by a Plasma-Modified Fibrillar Scaffold.
Polymers (Basel). 2024 Apr 18;16(8):1133. doi: 10.3390/polym16081133.
9
Lower jaw-to-forepaw rapid and delayed reorganization in the rat forepaw barrel subfield in primary somatosensory cortex.
J Comp Neurol. 2023 Nov;531(16):1651-1668. doi: 10.1002/cne.25523. Epub 2023 Jul 26.

本文引用的文献

2
Neocortex network activation and deactivation states controlled by the thalamus.
J Neurophysiol. 2010 Mar;103(3):1147-57. doi: 10.1152/jn.00955.2009. Epub 2010 Jan 6.
3
Rewiring of hindlimb corticospinal neurons after spinal cord injury.
Nat Neurosci. 2010 Jan;13(1):97-104. doi: 10.1038/nn.2448. Epub 2009 Dec 13.
4
The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators.
Nat Neurosci. 2010 Jan;13(1):9-17. doi: 10.1038/nn.2445. Epub 2009 Dec 6.
5
Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex.
Neuron. 2009 Nov 12;64(3):404-18. doi: 10.1016/j.neuron.2009.09.020.
7
Cortical firing and sleep homeostasis.
Neuron. 2009 Sep 24;63(6):865-78. doi: 10.1016/j.neuron.2009.08.024.
9
Neuropathic pain in spinal cord injury: significance of clinical and electrophysiological measures.
Eur J Neurosci. 2009 Jul;30(1):91-9. doi: 10.1111/j.1460-9568.2009.06801.x. Epub 2009 Jun 25.
10
Exercise induces cortical plasticity after neonatal spinal cord injury in the rat.
J Neurosci. 2009 Jun 10;29(23):7549-57. doi: 10.1523/JNEUROSCI.2474-08.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验