Gu Yu, Sinha Debajyoti, Banerjee Sudipto
Department of Statistics, Florida State University, Tallahassee, FL 32310-5608, USA.
Lifetime Data Anal. 2011 Jan;17(1):123-34. doi: 10.1007/s10985-010-9171-z. Epub 2010 Jun 3.
Due to significant progress in cancer treatments and management in survival studies involving time to relapse (or death), we often need survival models with cured fraction to account for the subjects enjoying prolonged survival. Our article presents a new proportional odds survival models with a cured fraction using a special hierarchical structure of the latent factors activating cure. This new model has same important differences with classical proportional odds survival models and existing cure-rate survival models. We demonstrate the implementation of Bayesian data analysis using our model with data from the SEER (Surveillance Epidemiology and End Results) database of the National Cancer Institute. Particularly aimed at survival data with cured fraction, we present a novel Bayes method for model comparisons and assessments, and demonstrate our new tool's superior performance and advantages over competing tools.
由于在涉及复发(或死亡)时间的生存研究中癌症治疗和管理取得了显著进展,我们常常需要具有治愈比例的生存模型来解释那些享有延长生存期的受试者。我们的文章提出了一种新的具有治愈比例的比例优势生存模型,该模型使用了激活治愈的潜在因素的特殊层次结构。这种新模型与经典比例优势生存模型和现有的治愈率生存模型有重要区别。我们使用来自美国国立癌症研究所的监测、流行病学和最终结果(SEER)数据库的数据,展示了使用我们的模型进行贝叶斯数据分析的过程。特别针对具有治愈比例的生存数据,我们提出了一种用于模型比较和评估的新颖贝叶斯方法,并展示了我们新工具相对于竞争工具的优越性能和优势。