Suppr超能文献

比例优势模型下治愈率生存数据的分析

Analysis of cure rate survival data under proportional odds model.

作者信息

Gu Yu, Sinha Debajyoti, Banerjee Sudipto

机构信息

Department of Statistics, Florida State University, Tallahassee, FL 32310-5608, USA.

出版信息

Lifetime Data Anal. 2011 Jan;17(1):123-34. doi: 10.1007/s10985-010-9171-z. Epub 2010 Jun 3.

Abstract

Due to significant progress in cancer treatments and management in survival studies involving time to relapse (or death), we often need survival models with cured fraction to account for the subjects enjoying prolonged survival. Our article presents a new proportional odds survival models with a cured fraction using a special hierarchical structure of the latent factors activating cure. This new model has same important differences with classical proportional odds survival models and existing cure-rate survival models. We demonstrate the implementation of Bayesian data analysis using our model with data from the SEER (Surveillance Epidemiology and End Results) database of the National Cancer Institute. Particularly aimed at survival data with cured fraction, we present a novel Bayes method for model comparisons and assessments, and demonstrate our new tool's superior performance and advantages over competing tools.

摘要

由于在涉及复发(或死亡)时间的生存研究中癌症治疗和管理取得了显著进展,我们常常需要具有治愈比例的生存模型来解释那些享有延长生存期的受试者。我们的文章提出了一种新的具有治愈比例的比例优势生存模型,该模型使用了激活治愈的潜在因素的特殊层次结构。这种新模型与经典比例优势生存模型和现有的治愈率生存模型有重要区别。我们使用来自美国国立癌症研究所的监测、流行病学和最终结果(SEER)数据库的数据,展示了使用我们的模型进行贝叶斯数据分析的过程。特别针对具有治愈比例的生存数据,我们提出了一种用于模型比较和评估的新颖贝叶斯方法,并展示了我们新工具相对于竞争工具的优越性能和优势。

相似文献

1
Analysis of cure rate survival data under proportional odds model.
Lifetime Data Anal. 2011 Jan;17(1):123-34. doi: 10.1007/s10985-010-9171-z. Epub 2010 Jun 3.
2
Semiparametric Bayesian estimation of quantile function for breast cancer survival data with cured fraction.
Biom J. 2016 Sep;58(5):1164-77. doi: 10.1002/bimj.201500111. Epub 2016 May 10.
3
A transformation class for spatio-temporal survival data with a cure fraction.
Stat Methods Med Res. 2016 Feb;25(1):167-87. doi: 10.1177/0962280212445658. Epub 2012 Apr 18.
5
Semiparametric proportional odds models for spatially correlated survival data.
Lifetime Data Anal. 2005 Jun;11(2):175-91. doi: 10.1007/s10985-004-0382-z.
6
Laplacian-P-splines for Bayesian inference in the mixture cure model.
Stat Med. 2022 Jun 30;41(14):2602-2626. doi: 10.1002/sim.9373. Epub 2022 Mar 14.
7
A new threshold regression model for survival data with a cure fraction.
Lifetime Data Anal. 2011 Jan;17(1):101-22. doi: 10.1007/s10985-010-9166-9. Epub 2010 Apr 23.
8
Spatially dependent polya tree modeling for survival data.
Biometrics. 2011 Jun;67(2):391-403. doi: 10.1111/j.1541-0420.2010.01468.x. Epub 2010 Aug 19.
9
Bayesian random threshold estimation in a Cox proportional hazards cure model.
Stat Med. 2014 Feb 20;33(4):650-61. doi: 10.1002/sim.5964. Epub 2013 Sep 6.

引用本文的文献

1
A New Approach to Modeling the Cure Rate in the Presence of Interval Censored Data.
Comput Stat. 2024 Jul;39(5):2743-2769. doi: 10.1007/s00180-023-01389-7. Epub 2023 Jul 15.
2
A support vector machine-based cure rate model for interval censored data.
Stat Methods Med Res. 2023 Dec;32(12):2405-2422. doi: 10.1177/09622802231210917. Epub 2023 Nov 8.
3
A Bayesian Mixture Cure Rate Model for Estimating Short-Term and Long-Term Recidivism.
Entropy (Basel). 2022 Dec 28;25(1):56. doi: 10.3390/e25010056.
4
A methodological framework for characterizing fish swimming and escapement behaviors in trawls.
PLoS One. 2020 Dec 11;15(12):e0243311. doi: 10.1371/journal.pone.0243311. eCollection 2020.
5
6
Comparison Cure Rate Models by DIC Criteria in Breast Cancer Data.
Asian Pac J Cancer Prev. 2018 Jun 25;19(6):1601-1606. doi: 10.22034/APJCP.2018.19.6.1601.
7
Computationally Efficient Estimation for the Generalized Odds Rate Mixture Cure Model with Interval-Censored Data.
J Comput Graph Stat. 2018;27(1):48-58. doi: 10.1080/10618600.2017.1349665. Epub 2018 Feb 1.
8
Semiparametric Bayesian estimation of quantile function for breast cancer survival data with cured fraction.
Biom J. 2016 Sep;58(5):1164-77. doi: 10.1002/bimj.201500111. Epub 2016 May 10.
9
Sample size calculation for the proportional hazards cure model.
Stat Med. 2012 Dec 20;31(29):3959-71. doi: 10.1002/sim.5465. Epub 2012 Jul 11.

本文引用的文献

1
Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models.
J Am Stat Assoc. 2003 Dec 1;98(464):1063-1078. doi: 10.1198/01622145030000001007.
2
Flexible Cure Rate Modeling Under Latent Activation Schemes.
J Am Stat Assoc. 2007 Jun 1;102(478):560-572. doi: 10.1198/016214507000000112.
3
Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota.
Biostatistics. 2003 Jan;4(1):123-42. doi: 10.1093/biostatistics/4.1.123.
4
A semi-parametric accelerated failure time cure model.
Stat Med. 2002 Nov 15;21(21):3235-47. doi: 10.1002/sim.1260.
5
Modeling spatial survival data using semiparametric frailty models.
Biometrics. 2002 Jun;58(2):287-97. doi: 10.1111/j.0006-341x.2002.00287.x.
6
Bayesian semiparametric models for survival data with a cure fraction.
Biometrics. 2001 Jun;57(2):383-8. doi: 10.1111/j.0006-341x.2001.00383.x.
7
8
Estimation in a Cox proportional hazards cure model.
Biometrics. 2000 Mar;56(1):227-36. doi: 10.1111/j.0006-341x.2000.00227.x.
9
Assessing placebo response using Bayesian hierarchical survival models.
Lifetime Data Anal. 1998;4(1):5-28. doi: 10.1023/a:1009644308160.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验