Suppr超能文献

自动选择最佳参考切片,以便从组织学图像中对小鼠大脑进行平滑体积重建。

Automatic best reference slice selection for smooth volume reconstruction of a mouse brain from histological images.

机构信息

School of Computer Science, University of Nottingham, NG8 1BB Nottingham, U.K.

出版信息

IEEE Trans Med Imaging. 2010 Sep;29(9):1688-96. doi: 10.1109/TMI.2010.2050594. Epub 2010 Jun 14.

Abstract

In this paper, we present a novel and effective method for registering histological slices of a mouse brain to reconstruct a 3-D volume. First, intensity variations in images are corrected through an intensity standardization process so that intensity values remain constant across slices. Second, the image space is transformed to a feature space where continuous variables are taken as high fidelity image features for accurate registration. Third, in order to improve the quality of the reconstructed volume, an automatic best reference slice selection algorithm is developed based on iterative assessment of image entropy and mean square error of the registration process. Fourth, a novel metric for evaluating the quality of the reconstructed volume is developed. Finally, the effect of optimal reference slice selection on the quality of registration and subsequent reconstruction is demonstrated.

摘要

在本文中,我们提出了一种新颖而有效的方法,用于将小鼠脑的组织切片注册到 3D 体积中进行重建。首先,通过强度标准化过程校正图像中的强度变化,以便在切片之间保持强度值恒定。其次,将图像空间转换为特征空间,其中连续变量被视为高精度的图像特征,以实现准确的注册。第三,为了提高重建体积的质量,我们开发了一种自动最佳参考切片选择算法,该算法基于对图像熵和注册过程均方误差的迭代评估。第四,开发了一种新的度量标准,用于评估重建体积的质量。最后,演示了最佳参考切片选择对注册和后续重建质量的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验