Rye B J, Hardesty R M
Appl Opt. 1989 Sep 15;28(18):3908-17. doi: 10.1364/AO.28.003908.
Recursive estimation of nonlinear functions of the return power in a lidar system entails use of a nonlinear filter. This also permits processing of returns in the presence of multiplicative noise (speckle). The use of the extended Kalman filter is assessed here for estimation of return power, log power, and speckle noise (which is regarded as a system rather than a measurement component), using coherent lidar returns and tested with simulated data. Reiterative processing of data samples using system models comprising a random walk signal together with an uncorrelated speckle term leads to self-consistent estimation of the parameters.
对激光雷达系统中回波功率的非线性函数进行递归估计需要使用非线性滤波器。这也允许在存在乘性噪声(散斑)的情况下处理回波。本文评估了扩展卡尔曼滤波器用于估计回波功率、对数功率和散斑噪声(将其视为系统而非测量分量)的情况,使用了相干激光雷达回波并通过模拟数据进行测试。使用包含随机游走信号和不相关散斑项的系统模型对数据样本进行迭代处理,可实现参数的自洽估计。