Suppr超能文献

重新审视吉布斯自由能最小化和加权约束满足的线性规划松弛方法。

Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction.

机构信息

Department of Cybernetics, Czech Technical University, Praha, Czech Republic.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Aug;32(8):1474-88. doi: 10.1109/TPAMI.2009.134.

Abstract

We present a number of contributions to the LP relaxation approach to weighted constraint satisfaction (= Gibbs energy minimization). We link this approach to many works from constraint programming, which relation has so far been ignored in machine vision and learning. While the approach has been mostly considered only for binary constraints, we generalize it to n-ary constraints in a simple and natural way. This includes a simple algorithm to minimize the LP-based upper bound, n-ary max-sum diffusion-however, we consider using other bound-optimizing algorithms as well. The diffusion iteration is tractable for a certain class of high-arity constraints represented as a black box, which is analogical to propagators for global constraints CSP. Diffusion exactly solves permuted n-ary supermodular problems. A hierarchy of gradually tighter LP relaxations is obtained simply by adding various zero constraints and coupling them in various ways to existing constraints. Zero constraints can be added incrementally, which leads to a cutting-plane algorithm. The separation problem is formulated as finding an unsatisfiable subproblem of a CSP.

摘要

我们提出了一些关于 LP 松弛方法在加权约束满足(=吉布斯能量最小化)中的应用。我们将这种方法与约束编程中的许多工作联系起来,而这些关系在机器视觉和学习中至今被忽视。虽然这种方法主要只考虑二进制约束,但我们以一种简单而自然的方式将其推广到了 n 元约束。这包括一种简单的算法来最小化基于 LP 的上界,n 元最大和扩散——然而,我们也考虑使用其他边界优化算法。对于以黑盒形式表示的特定类高次约束,扩散迭代是可行的,这类似于全局约束 CSP 的传播器。扩散可以精确地解决置换 n 元超模问题。通过简单地添加各种零约束并以各种方式将它们与现有约束耦合,可以获得一个逐渐更紧的 LP 松弛的层次结构。零约束可以递增地添加,这导致了一个切割平面算法。分离问题被表述为寻找 CSP 的不可满足子问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验