Suppr超能文献

生物孔在纳米医学、传感和纳米电子学中的应用。

Applications of biological pores in nanomedicine, sensing, and nanoelectronics.

机构信息

Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2110, USA.

出版信息

Curr Opin Biotechnol. 2010 Aug;21(4):439-76. doi: 10.1016/j.copbio.2010.05.002. Epub 2010 Jun 18.

Abstract

Biological protein pores and pore-forming peptides can generate a pathway for the flux of ions and other charged or polar molecules across cellular membranes. In nature, these nanopores have diverse and essential functions that range from maintaining cell homeostasis and participating in cell signaling to activating or killing cells. The combination of the nanoscale dimensions and sophisticated - often regulated - functionality of these biological pores make them particularly attractive for the growing field of nanobiotechnology. Applications range from single-molecule sensing to drug delivery and targeted killing of malignant cells. Potential future applications may include the use of nanopores for single strand DNA sequencing and for generating bio-inspired, and possibly, biocompatible visual detection systems and batteries. This article reviews the current state of applications of pore-forming peptides and proteins in nanomedicine, sensing, and nanoelectronics.

摘要

生物蛋白孔道和孔形成肽可以在细胞膜上产生离子和其他带电或极性分子的流动途径。在自然界中,这些纳米孔具有多种必不可少的功能,从维持细胞内环境平衡和参与细胞信号传递,到激活或杀死细胞。这些生物孔道的纳米尺寸和复杂的——通常是受调控的——功能相结合,使它们在日益发展的纳米生物技术领域具有特别的吸引力。应用范围从单分子传感到药物输送和靶向杀死恶性细胞。潜在的未来应用可能包括使用纳米孔道进行单链 DNA 测序,以及生成仿生的、可能是生物相容的视觉检测系统和电池。本文综述了孔形成肽和蛋白质在纳米医学、传感和纳米电子学中的应用现状。

相似文献

1
Applications of biological pores in nanomedicine, sensing, and nanoelectronics.
Curr Opin Biotechnol. 2010 Aug;21(4):439-76. doi: 10.1016/j.copbio.2010.05.002. Epub 2010 Jun 18.
2
Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA.
Nano Today. 2013 Feb;8(1):56-74. doi: 10.1016/j.nantod.2012.12.008.
3
Nanotechnological selection.
Nanotechnology. 2013 Jan 18;24(2):020201. doi: 10.1088/0957-4484/24/2/020201. Epub 2012 Dec 14.
4
Functionally Active Synthetic α-Helical Pores.
Acc Chem Res. 2024 Jul 2;57(13):1790-1802. doi: 10.1021/acs.accounts.4c00101. Epub 2024 Jun 14.
5
Aerolysin Nanopore Electrochemistry.
Acc Chem Res. 2025 Feb 18;58(4):517-528. doi: 10.1021/acs.accounts.4c00630. Epub 2025 Jan 28.
6
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine.
Sci China Life Sci. 2020 Aug;63(8):1103-1129. doi: 10.1007/s11427-020-1752-1. Epub 2020 Jun 29.
7
Nanochannels: biological channel analogues.
IET Nanobiotechnol. 2012 Jun;6(2):63-70. doi: 10.1049/iet-nbt.2011.0033.
8
Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly.
ACS Nano. 2021 Jul 27;15(7):11263-11275. doi: 10.1021/acsnano.0c10311. Epub 2021 Jun 15.
9
Templated Assembly of Pore-forming Peptides in Lipid Membranes.
Chimia (Aarau). 2019 Feb 27;73(1-2):59. doi: 10.2533/chimia.2019.59.
10
Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.
Chem Soc Rev. 2013 Jan 7;42(1):15-28. doi: 10.1039/c2cs35286a. Epub 2012 Sep 19.

引用本文的文献

1
Medical and Nonmedical Applications of Synthetic Transmembrane Anion Transporters.
Chem Rev. 2025 Sep 10;125(17):8370-8425. doi: 10.1021/acs.chemrev.5c00129. Epub 2025 Jul 7.
2
Hetero-Oligomeric Protein Pores for Single-Molecule Sensing.
J Membr Biol. 2024 Dec 19. doi: 10.1007/s00232-024-00331-2.
3
Computational Design of Pore-Forming Peptides with Potent Antimicrobial and Anticancer Activities.
J Med Chem. 2024 Aug 22;67(16):14040-14061. doi: 10.1021/acs.jmedchem.4c00912. Epub 2024 Aug 8.
4
A highly sensitive nanopore platform for measuring RNase A activity.
Talanta. 2024 Aug 15;276:126276. doi: 10.1016/j.talanta.2024.126276. Epub 2024 May 22.
5
Deconvoluting the Effect of Cell-Penetrating Peptides for Enhanced and Controlled Insertion of Large-Scale DNA Nanopores.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):18422-18433. doi: 10.1021/acsami.3c18636. Epub 2024 Apr 4.
6
T-S2Inet: Transformer-based sequence-to-image network for accurate nanopore sequence recognition.
Bioinformatics. 2024 Feb 1;40(2). doi: 10.1093/bioinformatics/btae083.
7
ProteinMPNN Recovers Complex Sequence Properties of Transmembrane β-barrels.
bioRxiv. 2024 Feb 1:2024.01.16.575764. doi: 10.1101/2024.01.16.575764.
9
Unraveling the Phase Behavior, Mechanical Stability, and Protein Reconstitution Properties of Polymer-Lipid Hybrid Vesicles.
Biomacromolecules. 2023 Sep 11;24(9):4156-4169. doi: 10.1021/acs.biomac.3c00498. Epub 2023 Aug 4.

本文引用的文献

1
Squeezing a single polypeptide through a nanopore.
Soft Matter. 2008 Apr 15;4(5):925-931. doi: 10.1039/b719850g.
2
Solid supported lipid bilayers: From biophysical studies to sensor design.
Surf Sci Rep. 2006 Nov 15;61(10):429-444. doi: 10.1016/j.surfrep.2006.06.001. Epub 2006 Sep 25.
3
Ion-Channel Gating in Transmembrane Receptor Proteins: Functional Activity in Tethered Lipid Membranes.
Angew Chem Int Ed Engl. 1999 Feb 1;38(3):389-392. doi: 10.1002/(SICI)1521-3773(19990201)38:3<389::AID-ANIE389>3.0.CO;2-U.
5
Nanoscopic porous sensors.
Annu Rev Anal Chem (Palo Alto Calif). 2008;1:737-66. doi: 10.1146/annurev.anchem.1.031207.112818.
6
Black lipid membranes stabilized through substrate conjugation to a hydrogel.
Biointerphases. 2008 Jun;3(2):FA96. doi: 10.1116/1.2948314.
7
Chemical derivatives of gramicidin.
Proc Soc Exp Biol Med. 1946 Nov;63(2):302-8. doi: 10.3181/00379727-63-15581.
8
Synthetic protocells to mimic and test cell function.
Adv Mater. 2010 Jan 5;22(1):120-7. doi: 10.1002/adma.200901945.
9
Single molecule sensing by nanopores and nanopore devices.
Analyst. 2010 Mar;135(3):441-51. doi: 10.1039/b907735a. Epub 2009 Dec 22.
10
Nanoscale ionic diodes with tunable and switchable rectifying behavior.
J Am Chem Soc. 2010 Feb 17;132(6):1766-7. doi: 10.1021/ja909876h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验