Suppr超能文献

代谢和奖赏进食使节律性大脑同步。

Metabolic and reward feeding synchronises the rhythmic brain.

机构信息

Centre National de la Recherche Scientifique (CNRS), Institut Fédératif en Neurosciences de Strasbourg (IFR37), Associé à l'Université de Strasbourg, Strasbourg, France.

出版信息

Cell Tissue Res. 2010 Jul;341(1):1-11. doi: 10.1007/s00441-010-1001-9. Epub 2010 Jun 20.

Abstract

Daily brain rhythmicity, which controls the sleep-wake cycle and neuroendocrine functions, is generated by an endogenous circadian timing system. Within the multi-oscillatory circadian network, a master clock is located in the suprachiasmatic nuclei of the hypothalamus, whose main synchroniser (Zeitgeber) is light. In contrast, imposed meal times and temporally restricted feeding are potent synchronisers for secondary clocks in peripheral organs such as the liver and in brain regions, although not for the suprachiasmatic nuclei. Even when animals are exposed to a light-dark cycle, timed calorie restriction (i.e. when only a hypocaloric diet is given every day) is a synchroniser powerful enough to modify the suprachiasmatic clockwork and increase the synchronising effects of light. A daily chocolate snack in animals fed ad libitum with chow diet entrains the suprachiasmatic clockwork only under the conditions of constant darkness and decreases the synchronising effects of light. Secondary clocks in the brain outside the suprachiasmatic nuclei are differentially influenced by meal timing. Circadian oscillations can either be highly sensitive to food-related metabolic or reward cues (i.e. their phase is shifted according to the timed meal schedule) in some structures or hardly affected by meal timing (palatable or not) in others. Furthermore, animals will manifest food-anticipatory activity prior to their expected meal time. Anticipation of a palatable or regular meal may rely on a network of brain clocks, involving metabolic and reward systems and the cerebellum.

摘要

日常的大脑节律性,控制着睡眠-觉醒周期和神经内分泌功能,是由内源性的生物钟系统产生的。在多振荡器的生物钟网络中,主钟位于下丘脑的视交叉上核,其主要的同步器( Zeitgeber )是光。相比之下,规定的进餐时间和限时进食是外周器官(如肝脏)和大脑区域中次级时钟的有力同步器,尽管对视交叉上核不是这样。即使动物暴露在光-暗循环中,定时的热量限制(即每天只给予低热量饮食)也是一种强大的同步器,可以改变视交叉上核的时钟机制,并增加光的同步作用。在自由进食的动物中,每天给予一份低热量的巧克力零食,只能在持续黑暗的条件下使视交叉上核的时钟机制同步,并降低光的同步作用。视交叉上核以外的大脑中的次级时钟受到进餐时间的不同影响。生物钟节律对与食物相关的代谢或奖励线索非常敏感(即根据定时进餐计划改变相位),在一些结构中,或者几乎不受进餐时间(美味或不美味)的影响,在其他结构中。此外,动物会在预期的进餐时间之前表现出食物期待性活动。对美味或常规食物的期待可能依赖于一个涉及代谢和奖励系统以及小脑的大脑时钟网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验