Regional Center for Environment and Health, ARPA Emilia-Romagna, Via Begarelli, 13, Modena 41121, Italy.
J Expo Sci Environ Epidemiol. 2011 Jul-Aug;21(4):385-94. doi: 10.1038/jes.2010.27. Epub 2010 Jun 23.
Because of practical problems associated with measurement of personal exposures to air pollutants in larger populations, almost all epidemiological studies assign exposures based on fixed-site ambient air monitoring stations. In the presence of multiple monitoring stations at different locations, the selection of them may affect the observed epidemiological concentration--response (C-R) relationships. In this paper, we quantify these impacts in an observational ecologic case--crossover study of air pollution and mortality. The associations of daily concentrations of PM(10), O(3), and NO(2) with daily all-cause non-violent mortality were investigated using conditional logistic regression to estimate percent increase in the risk of dying for an increase of 10 μg/m(3) in the previous day air pollutant concentrations (lag 1). The study area covers the six main cities in the central-western part of Emilia-Romagna region (population of 1.1 million). We used four approaches to assign exposure to air pollutants for each individual considered in the study: nearest background station; city average of all stations available; average of all stations in a macro-area covering three cities and average of all six cities in the study area (50 × 150 km(2)). Odds ratios generally increased enlarging the spatial dimension of the exposure definition and were highest for six city-average exposure definition. The effect is especially evident for PM(10), and similar for NO(2), whereas for ozone, we did not find any change in the C-R estimates. Within a geographically homogeneous region, the spatial aggregation of monitoring station data leads to higher and more robust risk estimates for PM(10) and NO(2), even if monitor-to-monitor correlations showed a light decrease with distance. We suggest that the larger aggregation improves the representativity of the exposure estimates by decreasing exposure misclassification, which is more profound when using individual stations vs regional averages.
由于在较大人群中测量个人暴露于空气污染物的实际问题,几乎所有的流行病学研究都是基于固定位置的环境空气监测站来进行暴露评估。在存在多个位于不同位置的监测站的情况下,它们的选择可能会影响观察到的流行病学浓度-反应(C-R)关系。在本文中,我们在一项关于空气污染与死亡率的观察性生态病例交叉研究中量化了这些影响。使用条件逻辑回归来研究 PM(10)、O(3)和 NO(2)的日浓度与每日非暴力总死亡率之间的关联,以估计前一天空气中污染物浓度每增加 10μg/m(3)时死亡风险增加的百分比(滞后 1)。研究区域覆盖艾米利亚-罗马涅地区中西部的六个主要城市(人口 110 万)。我们使用了四种方法为研究中考虑的每个人分配空气污染物的暴露值:最近的背景站;所有可用站点的城市平均值;覆盖三个城市的大区域内所有站点的平均值以及研究区域内所有六个城市的平均值(50×150km(2))。比值比随着暴露定义的空间维度的扩大而普遍增加,且以六个城市平均值的暴露定义最高。这种影响在 PM(10)中尤为明显,在 NO(2)中也类似,而对于臭氧,我们没有发现 C-R 估计值有任何变化。在地理上同质的区域内,监测站数据的空间聚集导致 PM(10)和 NO(2)的风险估计值更高且更稳健,即使监测站之间的相关性随着距离的增加而略有下降。我们认为,更大的聚集通过减少暴露错误分类来提高暴露估计的代表性,而使用个别站点与区域平均值相比,这种错误分类更为明显。