Suppr超能文献

降低脑白质病变对脑灰白质体积自动测量的影响。

Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes.

机构信息

NMR Research Unit, Department of Neuroinflammation, UCL Institute of Neurology, London, UK.

出版信息

J Magn Reson Imaging. 2010 Jul;32(1):223-8. doi: 10.1002/jmri.22214.

Abstract

PURPOSE

To develop an automated lesion-filling technique (LEAP; LEsion Automated Preprocessing) that would reduce lesion-associated brain tissue segmentation bias (which is known to affect automated brain gray [GM] and white matter [WM] tissue segmentations in people who have multiple sclerosis), and a WM lesion simulation tool with which to test it.

MATERIALS AND METHODS

Simulated lesions with differing volumes and signal intensities were added to volumetric brain images from three healthy subjects and then automatically filled with values approximating normal WM. We tested the effects of simulated lesions and lesion-filling correction with LEAP on SPM-derived tissue volume estimates.

RESULTS

GM and WM tissue volume estimates were affected by the presence of WM lesions. With simulated lesion volumes of 15 mL at 70% of normal WM intensity, the effect was to increase GM fractional (relative to intracranial) volumes by approximately 2.3%, and reduce WM fractions by approximately 3.6%. Lesion filling reduced these errors to approximately 0.1%.

CONCLUSION

The effect of WM lesions on automated GM and WM volume measures may be considerable and thereby obscure real disease-mediated volume changes. Lesion filling with values approximating normal WM enables more accurate GM and WM volume measures and should be applicable to structural scans independently of the software used for the segmentation.

摘要

目的

开发一种自动病变填充技术(LEAP;病变自动预处理),以减少与病变相关的脑组织分割偏差(已知这会影响多发性硬化症患者的自动脑灰质[GM]和白质[WM]组织分割),并开发一种 WM 病变模拟工具来对其进行测试。

材料和方法

将具有不同体积和信号强度的模拟病变添加到来自三个健康受试者的容积脑图像中,然后用近似正常 WM 的值自动填充。我们测试了 LEAP 模拟病变和病变填充校正对 SPM 衍生的组织体积估计的影响。

结果

GM 和 WM 组织体积估计受到 WM 病变的存在的影响。当模拟病变体积为正常 WM 强度的 70%时,体积为 15 mL 时,其作用是将 GM 分数(相对于颅内)体积增加约 2.3%,并将 WM 分数减少约 3.6%。病变填充将这些误差降低到约 0.1%。

结论

WM 病变对自动 GM 和 WM 体积测量的影响可能相当大,从而掩盖了真正的疾病介导的体积变化。用近似正常 WM 的值进行病变填充可以实现更准确的 GM 和 WM 体积测量,并且应该适用于独立于用于分割的软件的结构扫描。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验