Suppr超能文献

膜蛋白非天然态的特性研究。1. 化学变性剂存在下视紫红质的展开和聚集程度。

Characterization of membrane protein non-native states. 1. Extent of unfolding and aggregation of rhodopsin in the presence of chemical denaturants.

机构信息

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

出版信息

Biochemistry. 2010 Aug 3;49(30):6317-28. doi: 10.1021/bi100338e.

Abstract

Little is known about the general folding mechanisms of helical membrane proteins. Unfolded, i.e., non-native states, in particular, have not yet been characterized in detail. Here, we establish conditions under which denatured states of the mammalian membrane protein rhodopsin, a prototypic G protein coupled receptor with primary function in vision, can be studied. We investigated the effects of the chemical denaturants sodium dodecyl sulfate (SDS), urea, guanidine hydrochloride (GuHCl), and trifluoroacetic acid (TFA) on rhodopsin's secondary structure and propensity for aggregation. Ellipticity at 222 nm decreases in the presence of maximum concentrations of denaturants in the order TFA > GuHCl > urea > SDS + urea > SDS. Interpretation of these changes in ellipticity in terms of helix loss is challenged because the addition of some denaturants leads to aggregation. Through a combination of SDS-PAGE, dependence of ellipticity on protein concentration, and 1D (1)H NMR we show that aggregates form in the presence of GuHCl, TFA, and urea but not in any concentration of SDS, added over a range of 0.05%-30%. Mixed denaturant conditions consisting of 3% SDS and 8 M urea, added in this order, also did not result in aggregation. We conclude that SDS is able to prevent the exposure of large hydrophobic regions present in membrane proteins which otherwise leads to aggregation. Thus, 30% SDS and 3% SDS + 8 M urea are the denaturing conditions of choice to study maximally unfolded rhodopsin without aggregation.

摘要

关于螺旋膜蛋白的一般折叠机制,人们知之甚少。特别是, unfolded,即非天然状态,尚未得到详细描述。在这里,我们建立了研究哺乳动物膜蛋白视紫红质(一种具有主要视觉功能的典型 G 蛋白偶联受体)变性状态的条件。我们研究了化学变性剂十二烷基硫酸钠(SDS)、尿素、盐酸胍(GuHCl)和三氟乙酸(TFA)对视紫红质二级结构和聚集倾向的影响。在最大浓度变性剂存在的情况下,222nm 处的椭圆率按 TFA > GuHCl > 尿素 > SDS + 尿素 > SDS 的顺序降低。由于一些变性剂的加入会导致聚集,因此根据椭圆率的变化来解释螺旋损失的方法受到挑战。通过 SDS-PAGE、椭圆率与蛋白质浓度的关系以及一维(1)H NMR 的综合分析,我们表明在 GuHCl、TFA 和尿素存在的情况下会形成聚集体,但在 0.05%-30%范围内添加任何浓度的 SDS 都不会形成聚集体。按顺序添加 3% SDS 和 8 M 尿素的混合变性条件也不会导致聚集。我们得出结论,SDS 能够阻止膜蛋白中存在的大疏水区的暴露,否则会导致聚集。因此,30% SDS 和 3% SDS+8 M 尿素是研究最大程度展开的视紫红质而不发生聚集的最佳变性条件。

相似文献

2
Characterization of membrane protein non-native states. 2. The SDS-unfolded states of rhodopsin.
Biochemistry. 2010 Aug 3;49(30):6329-40. doi: 10.1021/bi100339x.
5
Conformational plasticity of cryptolepain: accumulation of partially unfolded states in denaturants induced equilibrium unfolding.
J Biotechnol. 2007 Sep 30;131(4):404-17. doi: 10.1016/j.jbiotec.2007.08.006. Epub 2007 Aug 7.
6
Denaturation induced aggregation in α-crystallin: differential action of chaotropes.
J Mol Recognit. 2016 Nov;29(11):536-543. doi: 10.1002/jmr.2553. Epub 2016 May 26.
7
Equilibrium unfolding of DLC8 monomer by urea and guanidine hydrochloride: Distinctive global and residue level features.
Biochimie. 2007 Jan;89(1):117-34. doi: 10.1016/j.biochi.2006.09.007. Epub 2006 Sep 26.
8
Kinetic inactivation study of mushroom tyrosinase: intermediate detection by denaturants.
J Protein Chem. 2003 Jul;22(5):463-71. doi: 10.1023/b:jopc.0000005462.05642.89.
10
Equilibrium unfolding of A. niger RNase: pH dependence of chemical and thermal denaturation.
Eur Biophys J. 2011 Aug;40(8):923-35. doi: 10.1007/s00249-011-0708-1. Epub 2011 May 25.

引用本文的文献

1
Photosystem I and ZIF-8 Interfacing: Entrapment and Immobilization.
Inorg Chem. 2025 Jun 2;64(21):10369-10378. doi: 10.1021/acs.inorgchem.4c05441. Epub 2025 May 20.
2
Lipid bilayer induces contraction of the denatured state ensemble of a helical-bundle membrane protein.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2109169119.
3
Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis.
Chem Rev. 2019 May 8;119(9):5537-5606. doi: 10.1021/acs.chemrev.8b00532. Epub 2019 Jan 4.
4
Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells.
J Biol Chem. 2018 Nov 9;293(45):17464-17476. doi: 10.1074/jbc.RA118.005624. Epub 2018 Sep 18.
5
Lipid-derived and other oxidative modifications of retinal proteins in a rat model of Smith-Lemli-Opitz syndrome.
Exp Eye Res. 2019 Jan;178:247-254. doi: 10.1016/j.exer.2018.08.006. Epub 2018 Aug 14.
6
Slow Interconversion in a Heterogeneous Unfolded-State Ensemble of Outer-Membrane Phospholipase A.
Biophys J. 2017 Sep 19;113(6):1280-1289. doi: 10.1016/j.bpj.2017.05.037. Epub 2017 Jun 16.
7
SPECTRAL METHODS FOR STUDY OF THE G-PROTEIN-COUPLED RECEPTOR RHODOPSIN. I. VIBRATIONAL AND ELECTRONIC SPECTROSCOPY.
Opt Spectrosc. 2015 May;118(5):711-717. doi: 10.1134/S0030400X15050240. Epub 2015 May 27.
9
Differential dynamics of extracellular and cytoplasmic domains in denatured States of rhodopsin.
Biochemistry. 2014 Nov 25;53(46):7160-9. doi: 10.1021/bi401557e. Epub 2014 Nov 10.
10
Fluorescence spectroscopy of rhodopsins: insights and approaches.
Biochim Biophys Acta. 2014 May;1837(5):694-709. doi: 10.1016/j.bbabio.2013.10.008. Epub 2013 Oct 29.

本文引用的文献

1
Refolding of the integral membrane protein light-harvesting complex II monitored by pulse EPR.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18485-90. doi: 10.1073/pnas.0906462106. Epub 2009 Oct 15.
2
In vitro unfolding and refolding of the small multidrug transporter EmrE.
J Mol Biol. 2009 Nov 6;393(4):815-32. doi: 10.1016/j.jmb.2009.08.039. Epub 2009 Aug 21.
3
Urea unfolding of opsin in phospholipid bicelles.
Photochem Photobiol. 2009 Mar-Apr;85(2):494-500. doi: 10.1111/j.1751-1097.2008.00503.x. Epub 2009 Jan 6.
4
Amyloid formation by globular proteins under native conditions.
Nat Chem Biol. 2009 Jan;5(1):15-22. doi: 10.1038/nchembio.131.
5
Comparison of stability predictions and simulated unfolding of rhodopsin structures.
Photochem Photobiol. 2007 Mar-Apr;83(2):351-62. doi: 10.1562/2006-06-20-RA-942.
7
Membrane proteins shape up: understanding in vitro folding.
Curr Opin Struct Biol. 2006 Aug;16(4):480-8. doi: 10.1016/j.sbi.2006.06.004. Epub 2006 Jul 3.
8
Conformational states and dynamics of rhodopsin in micelles and bilayers.
Biochemistry. 2006 May 2;45(17):5538-50. doi: 10.1021/bi060101v.
9
Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer.
Proc Natl Acad Sci U S A. 1987 Jan;84(1):146-50. doi: 10.1073/pnas.84.1.146.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验