Department of Chemical and Biological Engineering, ECCH 111 CB 424, University of Colorado, Boulder, Colorado 80309, USA.
ACS Appl Mater Interfaces. 2010 Jul;2(7):1963-72. doi: 10.1021/am100275n.
Enzyme-mediated redox chain initiation involving glucose oxidase (GOX) was employed in an iterative solution dip-coating technique to polymerize multiple, three-dimensional hydrogel layers using mild aqueous conditions at ambient temperature and oxygen levels. To the best of our knowledge, sequential enzyme-mediated dip-coating resulting in an interfacial radical chain polymerization and subsequent formation of three-dimensional hydrogel layers has not been previously explored. Conformal, micrometer-scale, uniform poly(ethylene glycol) (PEG)-based hydrogel layers were polymerized within seconds and remained securely associated after incubation in water for 16 weeks. Incorporation of either small molecules (i.e., rhodamine-B acrylate, fluorescein acrylate) or fluorescent nanoparticles into crosslinked hydrogel layers during the polymerization reaction was also achieved. The encapsulation of 0.2 microm-diameter nanoparticles into hydrogels during polymerization of a 2-hydroxyethyl acrylate (HEA)/PEG(575) diacrylate monomer formulation, using the GOX-mediated initiation, resulted in minimal effects on polymerization kinetics, with final acrylate conversions of 95% (+/- 1%) achieved within minutes. The temporal control and spatial localization afforded by this interfacial redox approach resulted in the polymerization of uniform secondary layers ranging between 150 (+/- 10) microm and 650 (+/- 10) microm for 15 and 120 s immersion times, respectively. Moreover, increasing the PEG(575)-fraction within the initial hydrogel substrate from 10 to 50% decreased the subsequent layer thicknesses from 690 (+/- 30) microm to 490 (+/- 10) microm because of lowered glucose concentration at the hydrogel interface. The ability to sequentially combine differing initiation mechanisms with this coating approach was achieved by using GOX-mediated interfacial polymerization on hydrogel substrates initially photopolymerized in the presence of glucose. The strict control of layer thicknesses combined with the rapid, water-soluble, and mild polymerization will readily benefit applications requiring formation of stratified, complex, and three-dimensional polymer structures.
采用酶介导的氧化还原链引发反应,利用葡萄糖氧化酶(GOX),在温和的水相条件下,于室温及氧气环境中,通过迭代溶液浸涂技术聚合多层三维水凝胶。据我们所知,之前尚未探索过通过顺序酶介导的浸涂反应,在界面处引发自由基链式聚合反应,并随后形成三维水凝胶层。几秒钟内即可聚合出具有保形性的、微米级的、均匀的聚乙二醇(PEG)基水凝胶层,并且在水中孵育 16 周后仍能牢固结合。在聚合反应过程中,还可以将小分子(如罗丹明 B 丙烯酰胺、荧光素丙烯酰胺)或荧光纳米粒子掺入交联水凝胶层中。使用 GOX 介导的引发反应,在聚合 2-羟乙基丙烯酰胺(HEA)/聚乙二醇(575)二丙烯酸酯单体配方时,将 0.2 微米直径的纳米粒子封装到水凝胶中,对聚合动力学的影响很小,几分钟内即可达到 95%(+/-1%)的最终丙烯酰胺转化率。这种界面氧化还原方法提供的时间控制和空间定位能力,可以实现均匀的二次层聚合,对于 15 和 120 秒的浸没时间,分别聚合出 150(+/-10)微米和 650(+/-10)微米厚的均匀层。此外,由于水凝胶界面处的葡萄糖浓度降低,初始水凝胶基质中 PEG(575)的比例从 10%增加到 50%,导致随后的层厚度从 690(+/-30)微米降低到 490(+/-10)微米。通过在存在葡萄糖的情况下用光聚合预先聚合水凝胶基底,然后使用 GOX 介导的界面聚合,这种涂层方法可以实现不同引发机制的顺序组合。结合快速、水溶性和温和的聚合条件,对控制层厚度的严格要求将极大地有益于需要形成分层、复杂和三维聚合物结构的应用。