Department of Psychiatry & Human Behavior, 5251 California Avenue, Suite 240, University of California, Irvine, CA 92617, USA.
Neuroimage. 2010 Nov 15;53(3):839-47. doi: 10.1016/j.neuroimage.2010.06.036. Epub 2010 Jun 22.
The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia.
影像遗传学方法通过可视化和量化遗传背景下的大脑激活模式,利用神经影像学和遗传学研究的个体优势来研究疾病的遗传基础。作为中间表型的脑成像可以帮助阐明基因、它们参与的分子网络以及大脑回路和功能之间的功能联系。将全基因组关联研究 (GWAS) 的遗传数据与脑成像作为定量性状 (QT) 表型进行整合,可以提高识别风险基因的统计能力。使用脑成像(工作记忆任务期间 DLPFC 激活)作为 QT 分析已确定精神分裂症的意外风险基因。其中一些基因(RSRC1、ARHGAP18、ROBO1-ROBO2、GPC1、TNIK 和 CTXN3-SLC12A2)具有与祖细胞增殖、迁移和分化、细胞骨架重排、轴突连接和前脑结构发育相关的功能。然而,这些基因并非孤立发挥作用,而是通过基因调控网络发挥作用。为了更深入地了解 GWAS 鉴定的基因如何参与更大的基因调控网络,我们测量了小鼠和人类死后组织中转录本水平之间的相关性,并进行了基因集富集分析(GSEA),鉴定出与精神分裂症相关的几种 microRNA(448、218、137)。这种计算方法的结果可以在动物实验中进一步验证,在实验中可以研究和用特定化合物干扰网络。例如,Glypican 1 和 FGF17 小鼠模型可用于研究这种基因调控网络。该模型显示 FGF 和 glypican 对大脑发育的上位相互作用,可能是精神分裂症阴性症状的有用模型。