Suppr超能文献

鉴定精神分裂症中的基因调控网络。

Identifying gene regulatory networks in schizophrenia.

机构信息

Department of Psychiatry & Human Behavior, 5251 California Avenue, Suite 240, University of California, Irvine, CA 92617, USA.

出版信息

Neuroimage. 2010 Nov 15;53(3):839-47. doi: 10.1016/j.neuroimage.2010.06.036. Epub 2010 Jun 22.

Abstract

The imaging genetics approach to studying the genetic basis of disease leverages the individual strengths of both neuroimaging and genetic studies by visualizing and quantifying the brain activation patterns in the context of genetic background. Brain imaging as an intermediate phenotype can help clarify the functional link among genes, the molecular networks in which they participate, and brain circuitry and function. Integrating genetic data from a genome-wide association study (GWAS) with brain imaging as a quantitative trait (QT) phenotype can increase the statistical power to identify risk genes. A QT analysis using brain imaging (DLPFC activation during a working memory task) as a quantitative trait has identified unanticipated risk genes for schizophrenia. Several of these genes (RSRC1, ARHGAP18, ROBO1-ROBO2, GPC1, TNIK, and CTXN3-SLC12A2) have functions related to progenitor cell proliferation, migration, and differentiation, cytoskeleton reorganization, axonal connectivity, and development of forebrain structures. These genes, however, do not function in isolation but rather through gene regulatory networks. To obtain a deeper understanding how the GWAS-identified genes participate in larger gene regulatory networks, we measured correlations among transcript levels in the mouse and human postmortem tissue and performed a gene set enrichment analysis (GSEA) that identified several microRNA associated with schizophrenia (448, 218, 137). The results of such computational approaches can be further validated in animal experiments in which the networks are experimentally studied and perturbed with specific compounds. Glypican 1 and FGF17 mouse models for example, can be used to study such gene regulatory networks. The model demonstrates epistatic interactions between FGF and glypican on brain development and may be a useful model of negative symptom schizophrenia.

摘要

影像遗传学方法通过可视化和量化遗传背景下的大脑激活模式,利用神经影像学和遗传学研究的个体优势来研究疾病的遗传基础。作为中间表型的脑成像可以帮助阐明基因、它们参与的分子网络以及大脑回路和功能之间的功能联系。将全基因组关联研究 (GWAS) 的遗传数据与脑成像作为定量性状 (QT) 表型进行整合,可以提高识别风险基因的统计能力。使用脑成像(工作记忆任务期间 DLPFC 激活)作为 QT 分析已确定精神分裂症的意外风险基因。其中一些基因(RSRC1、ARHGAP18、ROBO1-ROBO2、GPC1、TNIK 和 CTXN3-SLC12A2)具有与祖细胞增殖、迁移和分化、细胞骨架重排、轴突连接和前脑结构发育相关的功能。然而,这些基因并非孤立发挥作用,而是通过基因调控网络发挥作用。为了更深入地了解 GWAS 鉴定的基因如何参与更大的基因调控网络,我们测量了小鼠和人类死后组织中转录本水平之间的相关性,并进行了基因集富集分析(GSEA),鉴定出与精神分裂症相关的几种 microRNA(448、218、137)。这种计算方法的结果可以在动物实验中进一步验证,在实验中可以研究和用特定化合物干扰网络。例如,Glypican 1 和 FGF17 小鼠模型可用于研究这种基因调控网络。该模型显示 FGF 和 glypican 对大脑发育的上位相互作用,可能是精神分裂症阴性症状的有用模型。

相似文献

1
Identifying gene regulatory networks in schizophrenia.
Neuroimage. 2010 Nov 15;53(3):839-47. doi: 10.1016/j.neuroimage.2010.06.036. Epub 2010 Jun 22.
2
A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype.
Schizophr Bull. 2009 Jan;35(1):96-108. doi: 10.1093/schbul/sbn155. Epub 2008 Nov 20.
3
Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain.
Mol Psychiatry. 2020 Apr;25(4):791-804. doi: 10.1038/s41380-018-0304-1. Epub 2018 Nov 26.
4
Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia.
Mol Psychiatry. 2009 Apr;14(4):416-28. doi: 10.1038/mp.2008.127. Epub 2008 Dec 9.
6
Diverse types of genetic variation converge on functional gene networks involved in schizophrenia.
Nat Neurosci. 2012 Dec;15(12):1723-8. doi: 10.1038/nn.3261. Epub 2012 Nov 11.
8
A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data.
Nat Neurosci. 2019 May;22(5):691-699. doi: 10.1038/s41593-019-0382-7. Epub 2019 Apr 15.
9
Limited Association between Schizophrenia Genetic Risk Factors and Transcriptomic Features.
Genes (Basel). 2021 Jul 12;12(7):1062. doi: 10.3390/genes12071062.
10
Association of a Reproducible Epigenetic Risk Profile for Schizophrenia With Brain Methylation and Function.
JAMA Psychiatry. 2020 Jun 1;77(6):628-636. doi: 10.1001/jamapsychiatry.2019.4792.

引用本文的文献

1
AnomalGRN: deciphering single-cell gene regulation network with graph anomaly detection.
BMC Biol. 2025 Mar 11;23(1):73. doi: 10.1186/s12915-025-02177-z.
2
Astrocyte glypican 5 regulates synapse maturation and stabilization.
Cell Rep. 2025 Mar 25;44(3):115374. doi: 10.1016/j.celrep.2025.115374. Epub 2025 Mar 5.
3
Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance.
Biomolecules. 2024 Dec 18;14(12):1622. doi: 10.3390/biom14121622.
4
Transcriptome analysis to explore the mechanism of downregulated TNIK influencing the effect of risperidone.
Front Pharmacol. 2024 Aug 23;15:1431923. doi: 10.3389/fphar.2024.1431923. eCollection 2024.
7
Data mining and mathematical models in cancer prognosis and prediction.
Med Rev (2021). 2022 Jun 29;2(3):285-307. doi: 10.1515/mr-2021-0026. eCollection 2022 Jun.
8
Gene Expression Correlates of the Cortical Network Underlying Sentence Processing.
Neurobiol Lang (Camb). 2020 Mar 1;1(1):77-103. doi: 10.1162/nol_a_00004. eCollection 2020.
9
Genome-wide association study meta-analysis of suicide death and suicidal behavior.
Mol Psychiatry. 2023 Feb;28(2):891-900. doi: 10.1038/s41380-022-01828-9. Epub 2022 Oct 17.
10
Emerging evidence for astrocyte dysfunction in schizophrenia.
Glia. 2022 Sep;70(9):1585-1604. doi: 10.1002/glia.24221. Epub 2022 May 30.

本文引用的文献

3
Common variants on chromosome 6p22.1 are associated with schizophrenia.
Nature. 2009 Aug 6;460(7256):753-7. doi: 10.1038/nature08192. Epub 2009 Jul 1.
4
Gene-environment interaction tests for dichotomous traits in trios and sibships.
Genet Epidemiol. 2009 Dec;33(8):691-9. doi: 10.1002/gepi.20421.
5
A dynamic network approach for the study of human phenotypes.
PLoS Comput Biol. 2009 Apr;5(4):e1000353. doi: 10.1371/journal.pcbi.1000353. Epub 2009 Apr 10.
6
A random forest approach to the detection of epistatic interactions in case-control studies.
BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S65. doi: 10.1186/1471-2105-10-S1-S65.
7
Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia.
Mol Psychiatry. 2009 Apr;14(4):416-28. doi: 10.1038/mp.2008.127. Epub 2008 Dec 9.
9
Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study.
Schizophr Bull. 2009 Jan;35(1):19-31. doi: 10.1093/schbul/sbn162. Epub 2008 Nov 27.
10
A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype.
Schizophr Bull. 2009 Jan;35(1):96-108. doi: 10.1093/schbul/sbn155. Epub 2008 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验