Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
Curr Opin Cell Biol. 2010 Aug;22(4):430-6. doi: 10.1016/j.ceb.2010.05.002. Epub 2010 May 31.
The majority of intracellular membranes have strongly bent shapes with radii of curvature ranging from 20 to 50 nm. Many different proteins provide the substantial energy needed to generate and sustain this curvature. One of the most effective mechanisms of curvature creation is based on asymmetry of membrane monolayers. Proteins generate this asymmetry by flipping phospholipid across the membrane, modifying lipid molecules, or embedding their hydrophobic domains into the membrane matrix. We review the physical principles of these mechanisms of membrane bending and highlight the action of specific proteins driving vesicle-mediated transport. A model of clathrin-mediated vesicle budding from the trans-Golgi network is described to illustrate the interplay and mutual reinforcement of different mechanisms for generating membrane curvature.
大多数细胞内膜具有强烈弯曲的形状,曲率半径范围在 20 至 50nm 之间。许多不同的蛋白质提供了产生和维持这种曲率所需的大量能量。产生曲率的最有效机制之一是基于膜单层的不对称性。蛋白质通过将磷脂翻转穿过膜、修饰脂质分子或将其疏水区嵌入膜基质中来产生这种不对称性。我们回顾了这些膜弯曲机制的物理原理,并强调了特定蛋白质驱动囊泡介导运输的作用。描述了网格蛋白介导的从 Trans-Golgi 网络出芽的囊泡模型,以说明产生膜曲率的不同机制的相互作用和相互加强。