Suppr超能文献

蛋白质和脂质在产生膜曲率中的相互作用。

Interplay of proteins and lipids in generating membrane curvature.

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Curr Opin Cell Biol. 2010 Aug;22(4):430-6. doi: 10.1016/j.ceb.2010.05.002. Epub 2010 May 31.

Abstract

The majority of intracellular membranes have strongly bent shapes with radii of curvature ranging from 20 to 50 nm. Many different proteins provide the substantial energy needed to generate and sustain this curvature. One of the most effective mechanisms of curvature creation is based on asymmetry of membrane monolayers. Proteins generate this asymmetry by flipping phospholipid across the membrane, modifying lipid molecules, or embedding their hydrophobic domains into the membrane matrix. We review the physical principles of these mechanisms of membrane bending and highlight the action of specific proteins driving vesicle-mediated transport. A model of clathrin-mediated vesicle budding from the trans-Golgi network is described to illustrate the interplay and mutual reinforcement of different mechanisms for generating membrane curvature.

摘要

大多数细胞内膜具有强烈弯曲的形状,曲率半径范围在 20 至 50nm 之间。许多不同的蛋白质提供了产生和维持这种曲率所需的大量能量。产生曲率的最有效机制之一是基于膜单层的不对称性。蛋白质通过将磷脂翻转穿过膜、修饰脂质分子或将其疏水区嵌入膜基质中来产生这种不对称性。我们回顾了这些膜弯曲机制的物理原理,并强调了特定蛋白质驱动囊泡介导运输的作用。描述了网格蛋白介导的从 Trans-Golgi 网络出芽的囊泡模型,以说明产生膜曲率的不同机制的相互作用和相互加强。

相似文献

1
Interplay of proteins and lipids in generating membrane curvature.
Curr Opin Cell Biol. 2010 Aug;22(4):430-6. doi: 10.1016/j.ceb.2010.05.002. Epub 2010 May 31.
2
Membrane curvature and mechanisms of dynamic cell membrane remodelling.
Nature. 2005 Dec 1;438(7068):590-6. doi: 10.1038/nature04396.
3
Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis.
Semin Cell Dev Biol. 2010 Jun;21(4):363-70. doi: 10.1016/j.semcdb.2009.11.014. Epub 2009 Dec 1.
5
Vesicle formation at the plasma membrane and trans-Golgi network: the same but different.
Science. 2006 Sep 15;313(5793):1591-4. doi: 10.1126/science.1118133.
6
Curvature-driven lipid sorting in biomembranes.
Cold Spring Harb Perspect Biol. 2011 Feb 1;3(2):a004648. doi: 10.1101/cshperspect.a004648.
7
Protein-membrane interactions: sensing and generating curvature.
Trends Biochem Sci. 2024 May;49(5):401-416. doi: 10.1016/j.tibs.2024.02.005. Epub 2024 Mar 19.
8
ENTH/ANTH proteins and clathrin-mediated membrane budding.
J Cell Sci. 2004 Jan 1;117(Pt 1):9-18. doi: 10.1242/jcs.00928.
9
Membrane remodeling in clathrin-mediated endocytosis.
J Cell Sci. 2018 Sep 3;131(17):jcs216812. doi: 10.1242/jcs.216812.
10
Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network.
Mol Biol Cell. 2003 Apr;14(4):1545-57. doi: 10.1091/mbc.02-07-0109.

引用本文的文献

1
2
Nanodisc single-molecule pulldown to study lipid-protein interactions.
J Lipid Res. 2025 Jul;66(7):100846. doi: 10.1016/j.jlr.2025.100846. Epub 2025 Jun 20.
3
Lipid flippases ATP9A and ATP9B form a complex and contribute to the exocytic pathway from the Golgi.
Life Sci Alliance. 2025 Apr 15;8(7). doi: 10.26508/lsa.202403163. Print 2025 Jul.
4
Glycerophospholipids: Roles in Cell Trafficking and Associated Inborn Errors.
J Inherit Metab Dis. 2025 Mar;48(2):e70019. doi: 10.1002/jimd.70019.
5
ATP8A1-translocated endosomal phosphatidylserine fine-tunes the multivesicular body formation and the endo-lysosomal traffic.
iScience. 2025 Feb 11;28(3):111973. doi: 10.1016/j.isci.2025.111973. eCollection 2025 Mar 21.
8
The lipid flippase ATP8A1 regulates the recruitment of ARF effectors to the trans-Golgi Network.
Arch Biochem Biophys. 2024 Aug;758:110049. doi: 10.1016/j.abb.2024.110049. Epub 2024 Jun 13.
9
Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes.
Biochim Biophys Acta Mol Cell Res. 2024 Apr;1871(4):119700. doi: 10.1016/j.bbamcr.2024.119700. Epub 2024 Feb 19.
10
The DDHD2-STXBP1 interaction mediates long-term memory via generation of saturated free fatty acids.
EMBO J. 2024 Feb;43(4):533-567. doi: 10.1038/s44318-024-00030-7. Epub 2024 Feb 5.

本文引用的文献

1
Membrane curvature in synaptic vesicle fusion and beyond.
Cell. 2010 Mar 5;140(5):601-5. doi: 10.1016/j.cell.2010.02.017.
2
Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release.
Science. 2010 Mar 26;327(5973):1614-8. doi: 10.1126/science.1183765. Epub 2010 Feb 11.
3
Biophysics: Joint effort bends membrane.
Nature. 2010 Jan 28;463(7280):439-40. doi: 10.1038/463439a.
4
Role of C2 domain proteins during synaptic vesicle exocytosis.
Biochem Soc Trans. 2010 Feb;38(Pt 1):213-6. doi: 10.1042/BST0380213.
5
Regulation of a Golgi flippase by phosphoinositides and an ArfGEF.
Nat Cell Biol. 2009 Dec;11(12):1421-6. doi: 10.1038/ncb1989. Epub 2009 Nov 8.
6
Modeling membrane shaping by proteins: focus on EHD2 and N-BAR domains.
FEBS Lett. 2010 May 3;584(9):1830-9. doi: 10.1016/j.febslet.2009.10.023. Epub 2009 Oct 16.
7
Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast.
Proc Natl Acad Sci U S A. 2009 Sep 29;106(39):16586-91. doi: 10.1073/pnas.0904293106. Epub 2009 Sep 15.
9
Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission.
Mol Biol Cell. 2009 Nov;20(22):4630-9. doi: 10.1091/mbc.e09-08-0683. Epub 2009 Sep 23.
10
Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport.
PLoS Biol. 2009 Sep;7(9):e1000194. doi: 10.1371/journal.pbio.1000194. Epub 2009 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验