Suppr超能文献

微管辅助功能代谢大分子复合物形成的机制。

Microtubule-assisted mechanism for functional metabolic macromolecular complex formation.

机构信息

Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12872-6. doi: 10.1073/pnas.1008451107. Epub 2010 Jul 6.

Abstract

Evidence has been presented for a metabolic multienzyme complex, the purinosome, that participates in de novo purine biosynthesis to form clusters in the cytoplasm of living cells under purine-depleted conditions. Here we identified, using fluorescent live cell imaging, that a microtubule network appears to physically control the spatial distribution of purinosomes in the cytoplasm. Application of a cell-based assay measuring the rate of de novo purine biosynthesis confirmed that the metabolic activity of purinosomes was significantly suppressed in the absence of microtubules. Collectively, we propose a microtubule-assisted mechanism for functional purinosome formation in HeLa cells.

摘要

已经有证据表明存在一种代谢多酶复合物——嘌呤体,它参与从头合成嘌呤,在嘌呤缺乏的条件下,在活细胞的细胞质中形成簇。在这里,我们使用荧光活细胞成像技术发现,微管网络似乎在物理上控制了嘌呤体在细胞质中的空间分布。应用一种基于细胞的测定方法来测量从头合成嘌呤的速率,证实了在没有微管的情况下,嘌呤体的代谢活性显著受到抑制。总的来说,我们提出了一个微管辅助的机制,用于在 HeLa 细胞中形成功能性嘌呤体。

相似文献

1
Microtubule-assisted mechanism for functional metabolic macromolecular complex formation.
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12872-6. doi: 10.1073/pnas.1008451107. Epub 2010 Jul 6.
2
Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis.
J Biol Chem. 2015 Mar 13;290(11):6705-13. doi: 10.1074/jbc.M114.628701. Epub 2015 Jan 20.
3
Detecting Purinosome Metabolon Formation with Fluorescence Microscopy.
Methods Mol Biol. 2018;1764:279-289. doi: 10.1007/978-1-4939-7759-8_17.
4
Reversible compartmentalization of de novo purine biosynthetic complexes in living cells.
Science. 2008 Apr 4;320(5872):103-6. doi: 10.1126/science.1152241.
5
Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13009-13014. doi: 10.1073/pnas.1814042115. Epub 2018 Dec 3.
6
Dynamic architecture of the purinosome involved in human de novo purine biosynthesis.
Biochemistry. 2015 Jan 27;54(3):870-80. doi: 10.1021/bi501480d. Epub 2015 Jan 15.
7
Transiently transfected purine biosynthetic enzymes form stress bodies.
PLoS One. 2013;8(2):e56203. doi: 10.1371/journal.pone.0056203. Epub 2013 Feb 6.
8
G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism.
Biotechnol Genet Eng Rev. 2013;29:31-48. doi: 10.1080/02648725.2013.801237.
9
A New View into the Regulation of Purine Metabolism: The Purinosome.
Trends Biochem Sci. 2017 Feb;42(2):141-154. doi: 10.1016/j.tibs.2016.09.009. Epub 2016 Oct 28.
10
Study of purinosome assembly in cell-based model systems with de novo purine synthesis and salvage pathway deficiencies.
PLoS One. 2018 Jul 30;13(7):e0201432. doi: 10.1371/journal.pone.0201432. eCollection 2018.

引用本文的文献

1
Resilience and vulnerabilities of tumor cells under purine shortage stress.
Clin Cancer Res. 2025 Aug 11. doi: 10.1158/1078-0432.CCR-25-1667.
2
Resilience and vulnerabilities of tumor cells under purine shortage stress.
bioRxiv. 2025 Apr 12:2025.03.19.644180. doi: 10.1101/2025.03.19.644180.
3
Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review.
Acta Histochem Cytochem. 2024 Jun 28;57(3):89-100. doi: 10.1267/ahc.24-00027. Epub 2024 Jun 22.
4
Purinosomes involved in the regulation of tumor metabolism: current progress and potential application targets.
Front Oncol. 2024 Apr 26;14:1333822. doi: 10.3389/fonc.2024.1333822. eCollection 2024.
5
A journey into the regulatory secrets of the purine nucleotide biosynthesis.
Front Pharmacol. 2024 Feb 20;15:1329011. doi: 10.3389/fphar.2024.1329011. eCollection 2024.
6
Arginyltransferase 1 modulates p62-driven autophagy via mTORC1/AMPk signaling.
Cell Commun Signal. 2024 Jan 31;22(1):87. doi: 10.1186/s12964-024-01499-9.
7
Regulatory mechanisms of one-carbon metabolism enzymes.
J Biol Chem. 2023 Dec;299(12):105457. doi: 10.1016/j.jbc.2023.105457. Epub 2023 Nov 9.
8
The roles of molecular chaperones in regulating cell metabolism.
FEBS Lett. 2023 Jul;597(13):1681-1701. doi: 10.1002/1873-3468.14682. Epub 2023 Jun 16.
10

本文引用的文献

1
Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2.
J Biol Chem. 2010 Apr 9;285(15):11093-9. doi: 10.1074/jbc.M110.101139. Epub 2010 Feb 15.
2
Reversible compartmentalization of de novo purine biosynthetic complexes in living cells.
Science. 2008 Apr 4;320(5872):103-6. doi: 10.1126/science.1152241.
4
A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes.
Yeast. 1999 Nov;15(15):1619-29. doi: 10.1002/(SICI)1097-0061(199911)15:15<1619::AID-YEA487>3.0.CO;2-R.
5
Cell cycle-related changes in F-actin distribution are correlated with glycolytic activity.
Exp Cell Res. 1995 Jun;218(2):551-60. doi: 10.1006/excr.1995.1190.
9
Aldolase exists in both the fluid and solid phases of cytoplasm.
J Cell Biol. 1988 Sep;107(3):981-91. doi: 10.1083/jcb.107.3.981.
10
Complexes of sequential metabolic enzymes.
Annu Rev Biochem. 1987;56:89-124. doi: 10.1146/annurev.bi.56.070187.000513.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验