Suppr超能文献

固氮垂直传递内共生多细胞蓝细菌中的基因组侵蚀。

Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.

机构信息

Department of Botany, Stockholm University, Stockholm, Sweden.

出版信息

PLoS One. 2010 Jul 8;5(7):e11486. doi: 10.1371/journal.pone.0011486.

Abstract

BACKGROUND

An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive.

METHODOLOGY/PRINCIPAL FINDINGS: To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (approximately 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved.

CONCLUSIONS/SIGNIFICANCE: This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor.

摘要

背景

远古蓝藻与真核生物共生,导致了质体(叶绿体)的进化,并随后引发了植物王国的起源。这一单系事件的潜在机制和伙伴的身份仍然难以捉摸。

方法/主要发现:为了阐明这一进化过程,我们对一种生活在与植物共生的蓝藻进行了基因组测序,这种植物是水蕨 Azolla filiculoides Lam。之所以选择这种共生关系,是因为它具有使其在现存的蓝藻-植物共生关系中独一无二的特征:蓝藻缺乏自主生长能力,并且在植物世代之间垂直传播。我们的研究结果揭示了具有进化意义的特征。该基因组处于侵蚀状态,这表现在大量的假基因(31.2%)和大量散布在基因组中的转座元件(约 600 个)。假基因化发生在复制起始子 dnaA 和 DNA 修复基因等基因中,这些基因被认为对自由生活的蓝藻是必不可少的。对于一些功能类别的基因,假基因比功能基因更为普遍。即使在细菌的“核心”基因类别中,功能丧失也很明显,例如参与糖酵解和养分吸收的基因。相比之下,与代谢过程相关的基因,如细胞分化和固氮相关的基因,由于能够为宿主提供氮源,因此保存完好。

结论/意义:这是首次在植物共生体和表型复杂的蓝藻中发现基因组退化的现象,也是仅有的少数描述的具有还原基因组进化迹象的细胞外内共生体之一。我们的研究结果表明,这种蓝藻基因组正在经历持续的选择性简化,导致其成为一种专门进行固氮作用而缺乏自主生长的生物体。因此,水蕨的蓝藻共生体可以被认为处于从自由生活的生物体向固氮植物实体的过渡的初始阶段,这一过渡过程可能模拟了驱动叶绿体从蓝藻祖先进化而来的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0c4/2900214/e027e541ae14/pone.0011486.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验