Stanford University School of Medicine, Department of Neurology, Stanford, CA 94305, USA.
J Neurophysiol. 2010 Oct;104(4):2214-23. doi: 10.1152/jn.00147.2010. Epub 2010 Jul 14.
The density of somatostatin (SOM)-containing GABAergic interneurons in the hilus of the dentate gyrus is significantly decreased in both human and experimental temporal lobe epilepsy. We used the pilocarpine model of status epilepticus and temporal lobe epilepsy in mice to study anatomical and electrophysiological properties of surviving somatostatin interneurons and determine whether compensatory functional changes occur that might offset loss of other inhibitory neurons. Using standard patch-clamp techniques and pipettes containing biocytin, whole cell recordings were obtained in hippocampal slices maintained in vitro. Hilar SOM cells containing enhanced green fluorescent protein (EGFP) were identified with fluorescent and infrared differential interference contrast video microscopy in epileptic and control GIN (EGFP-expressing Inhibitory Neurons) mice. Results showed that SOM cells from epileptic mice had 1) significant increases in somatic area and dendritic length; 2) changes in membrane properties, including a small but significant decrease in resting membrane potential, and increases in time constant and whole cell capacitance; 3) increased frequency of slowly rising spontaneous excitatory postsynaptic currents (sEPSCs) due primarily to increased mEPSC frequency, without changes in the probability of release; 4) increased evoked EPSC amplitude; and 5) increased spontaneous action potential generation in cell-attached recordings. Results suggest an increase in excitatory innervation, perhaps on distal dendrites, considering the slower rising EPSCs and increased output of hilar SOM cells in this model of epilepsy. In sum, these changes would be expected to increase the inhibitory output of surviving SOM interneurons and in part compensate for interneuronal loss in the epileptogenic hippocampus.
在人类和实验性颞叶癫痫中,齿状回门区含有生长抑素(SOM)的 GABA 能中间神经元的密度明显降低。我们使用匹罗卡品癫痫持续状态和颞叶癫痫模型在小鼠中研究存活的生长抑素中间神经元的解剖和电生理特性,并确定是否发生代偿性功能变化,以抵消其他抑制性神经元的丧失。使用标准的膜片钳技术和含有生物胞素的玻璃微电极,在体外维持的海马切片中获得全细胞记录。在癫痫和对照 GIN(表达 EGFP 的抑制性神经元)小鼠中,使用荧光和红外差分干涉对比视频显微镜鉴定含有增强型绿色荧光蛋白(EGFP)的门区 SOM 细胞。结果表明,癫痫小鼠的 SOM 细胞具有以下特征:1)体细胞面积和树突长度显著增加;2)膜特性发生变化,包括静息膜电位略有但显著降低,时间常数和全细胞电容增加;3)由于 mEPSC 频率增加,导致缓慢上升的自发性兴奋性突触后电流(sEPSC)频率增加,但释放概率没有变化;4)诱发 EPSC 幅度增加;5)在细胞附着记录中自发性动作电位产生增加。这些结果表明兴奋性传入增加,可能是在远端树突上,考虑到在这种癫痫模型中 EPSC 上升较慢和门区 SOM 细胞输出增加。总之,这些变化预计会增加存活的 SOM 中间神经元的抑制性输出,并在一定程度上补偿癫痫海马体中神经元的丧失。