Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
Med Phys. 2010 Jun;37(6):2974-84. doi: 10.1118/1.3431999.
The objective of this study is to evaluate requirements for radionuclide-based solid tumor therapy by assessing the radial dose distribution of beta-particle-emitting and alpha-particle-emitting molecules localized either solely within endothelial cells of tumor vasculature or diffusing from the vasculature throughout the adjacent viable tumor cells.
Tumor blood vessels were modeled as a group of microcylindrical layers comprising endothelial cells (one-cell thick, 10 microm diameter), viable tumor cells (25-cell thick, 250 microm radius), and necrotic tumor region (> 250 microm from any blood vessel). Sources of radioactivity were assumed to distribute uniformly in either endothelial cells or in concentric cylindrical 10 microm shells within the viable tumor-cell region. The EGSnrc Monte Carlo simulation code system was used for beta particle dosimetry and a dose-point kernel method for alpha particle dosimetry. The radioactive decays required to deposit cytocidal doses (> or = 100 Gy) in the vascular endothelial cells (endothelial cell mean dose) or, alternatively, at the tumor edge [tumor-edge mean dose (TEMD)] of adjacent viable tumor cells were then determined for six beta (32P, 33P, 67Cu, 90Y 131I, and 1188Re) and two alpha (211At and 213Bi) particle emitters.
Contrary to previous modeling in targeted radionuclide therapy dosimetry of solid tumors, the present work restricts the region of tumor viability to 250 microm around tumor blood vessels for consistency with biological observations. For delivering > or = 100 Gy at the viable tumor edge (TEMD) rather than throughout a solid tumor, energetic beta emitters 90Y, 32P, and 188Re can be effective even when the radionuclide is confined to the blood vessel (i.e., no diffusion into the tumor). Furthermore, the increase in tumor-edge dose consequent to beta emitter diffusion is dependent on the energy of the emitted beta particles, being much greater for lower-energy emitters 131I, 67Cu, and 33P relative to higher-energy emitters 90Y, 32P, and 188Re. Compared to alpha particle emitters, a approximately 150-400 times higher number of beta-particle-emitting radioactive atoms is required to deposit the same dose in tumor neovasculature. However, for the alpha particle emitters 211At and 213Bi to be effective in irradiating viable tumor-cell regions in addition to the vasculature the carrier molecules must diffuse substantially from the vasculature into the viable tumor.
The presented data enable comparison of radionuclides used for antiangiogenic therapy on the basis of their radioactive decay properties, tumor neovasculature geometry, and tumor-cell viability. For alpha particle emitters or low-energy beta particle emitters, the targeting carrier molecule should be chosen to permit the radiopharmaceutical to diffuse from the endothelial wall of the blood vessel, while for long-range energetic beta particle emitters that target neovasculature, a radiopharmaceutical that binds to newly formed endothelial cells and does not diffuse is preferable. The work is a first approximation to modeling of tumor neovasculature that ignores factors such as pharmacokinetics and targeting capability of carrier molecules. The calculations quantify the interplay between irradiation of neovasculature, the surrounding viable tumor cells, and the physical properties of commonly used radionuclides and can be used to assist estimation of radioactivity to be administered for neovasculature-targeted tumor therapy.
本研究旨在通过评估仅位于肿瘤血管内皮细胞内或从血管扩散到相邻存活肿瘤细胞中的β-粒子发射和α-粒子发射分子的径向剂量分布,来评估基于放射性核素的实体瘤治疗的要求。
将肿瘤血管建模为一组微圆柱层,包括内皮细胞(一层厚,直径 10 微米)、存活的肿瘤细胞(25 层厚,半径 250 微米)和坏死的肿瘤区域(距任何血管> 250 微米)。放射性活度源假设在要么在内皮细胞中,要么在活肿瘤细胞区域内的同心圆柱 10 微米壳内均匀分布。EGSnrc 蒙特卡罗模拟代码系统用于β粒子剂量测定,而剂量点核方法用于α粒子剂量测定。然后,确定六种β(32P、33P、67Cu、90Y 131I 和 1188Re)和两种α(211At 和 213Bi)粒子发射器在血管内皮细胞(内皮细胞平均剂量)中或在相邻存活肿瘤细胞的肿瘤边缘[肿瘤边缘平均剂量(TEMD)]中沉积细胞杀伤剂量(> = 100Gy)所需的放射性衰变。
与实体瘤靶向放射性核素治疗剂量学中的先前建模相反,本工作将肿瘤存活区限制在肿瘤血管周围 250 微米内,以与生物学观察保持一致。为了在 TEMD 处而非整个实体瘤中提供> = 100Gy 的剂量,即使放射性核素局限于血管(即没有扩散到肿瘤中),高能β发射器 90Y、32P 和 188Re 也可以有效。此外,由于β发射器的扩散而导致的肿瘤边缘剂量的增加取决于发射的β粒子的能量,对于低能发射体 131I、67Cu 和 33P,与高能发射体 90Y、32P 和 188Re 相比,β粒子的能量更大。与α粒子发射器相比,沉积相同剂量的肿瘤新血管需要大约 150-400 倍的β-粒子发射放射性原子数。然而,为了使α粒子发射器 211At 和 213Bi 除了血管之外还能有效地辐照存活的肿瘤细胞区域,载体分子必须从血管中大量扩散到存活的肿瘤中。
所提供的数据可基于放射性衰变特性、肿瘤新血管几何形状和肿瘤细胞活力来比较用于抗血管生成治疗的放射性核素。对于α粒子发射器或低能β粒子发射器,应选择靶向载体分子,以允许放射性药物从血管内皮壁扩散,而对于靶向新血管的长射程高能β粒子发射器,最好选择与新形成的内皮细胞结合且不扩散的放射性药物。这项工作是对忽略载体分子药代动力学和靶向能力等因素的肿瘤新血管建模的初步尝试。该计算量化了新血管照射、周围存活肿瘤细胞以及常用放射性核素物理性质之间的相互作用,并可用于协助估计用于新血管靶向肿瘤治疗的放射性活度。