Service de Chimie Inorganique et Biologique, (UMR_E 3 CEA UJF, FRE 3200 CNRS), INAC, CEA, 38054 Grenoble, France.
J Chem Phys. 2010 Jul 14;133(2):024504. doi: 10.1063/1.3456987.
We present a theoretical model for calculating the relaxivity of the water protons due to Gd(3+) complexes trapped inside nanovesicles, which are permeable to water. The formalism is applied to the characterization of apoferritin systems [S. Aime et al., Angew. Chem., Int. Ed. 41, 1017 (2002); O. Vasalatiy et al., Contrast Media Mol. Imaging 1, 10 (2006)]. The very high relaxivity due to these systems is attributed to an increase of the local viscosity of the aqueous solution inside the vesicles and to an outer-sphere mechanism which largely dominates the inner-sphere contribution. We discuss how to tailor the dynamic parameters of the trapped complexes in order to optimize the relaxivity. More generally, the potential of relaxivity studies for investigating the local dynamics and residence time of exchangeable molecules in nanovesicles is pointed out.
我们提出了一个理论模型,用于计算由于水可渗透的纳米囊泡内捕获的 Gd(3+) 配合物导致的水质子弛豫率。该形式体系适用于脱铁蛋白系统的表征 [S. Aime 等人,Angew. Chem., Int. Ed. 41, 1017 (2002);O. Vasalatiy 等人,Contrast Media Mol. Imaging 1, 10 (2006)]。这些系统具有非常高的弛豫率归因于囊泡内水溶液的局部粘度增加和外球机制,该机制在很大程度上主导了内球贡献。我们讨论了如何调整捕获配合物的动态参数以优化弛豫率。更一般地,指出了弛豫率研究在研究纳米囊泡中可交换分子的局部动力学和停留时间方面的潜力。