Suppr超能文献

基于网络的功能预测和互作组学:以代谢酶为例。

Network-based function prediction and interactomics: the case for metabolic enzymes.

机构信息

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB20QH, United Kingdom.

出版信息

Metab Eng. 2011 Jan;13(1):1-10. doi: 10.1016/j.ymben.2010.07.001. Epub 2010 Jul 21.

Abstract

As sequencing technologies increase in power, determining the functions of unknown proteins encoded by the DNA sequences so produced becomes a major challenge. Functional annotation is commonly done on the basis of amino-acid sequence similarity alone. Long after sequence similarity becomes undetectable by pair-wise comparison, profile-based identification of homologs can often succeed due to the conservation of position-specific patterns, important for a protein's three dimensional folding and function. Nevertheless, prediction of protein function from homology-driven approaches is not without problems. Homologous proteins might evolve different functions and the power of homology detection has already started to reach its maximum. Computational methods for inferring protein function, which exploit the context of a protein in cellular networks, have come to be built on top of homology-based approaches. These network-based functional inference techniques provide both a first hand hint into a proteins' functional role and offer complementary insights to traditional methods for understanding the function of uncharacterized proteins. Most recent network-based approaches aim to integrate diverse kinds of functional interactions to boost both coverage and confidence level. These techniques not only promise to solve the moonlighting aspect of proteins by annotating proteins with multiple functions, but also increase our understanding on the interplay between different functional classes in a cell. In this article we review the state of the art in network-based function prediction and describe some of the underlying difficulties and successes. Given the volume of high-throughput data that is being reported the time is ripe to employ these network-based approaches, which can be used to unravel the functions of the uncharacterized proteins accumulating in the genomic databases.

摘要

随着测序技术的发展,确定由产生的 DNA 序列编码的未知蛋白质的功能成为一个主要挑战。功能注释通常仅基于氨基酸序列相似性进行。即使序列相似性在两两比较中变得无法检测,基于序列模式的同源物识别也常常可以成功,因为位置特异性模式对于蛋白质的三维折叠和功能非常重要。然而,基于同源性的方法预测蛋白质功能并非没有问题。同源蛋白可能会进化出不同的功能,而且同源性检测的能力已经开始达到极限。从基于同源性的方法出发,利用蛋白质在细胞网络中的上下文来推断蛋白质功能的计算方法已经建立起来。这些基于网络的功能推断技术不仅为蛋白质的功能作用提供了第一手提示,而且为理解未表征蛋白质的功能提供了与传统方法互补的见解。最近的基于网络的方法旨在整合各种功能相互作用,以提高覆盖范围和置信度水平。这些技术不仅有望通过为具有多种功能的蛋白质进行注释来解决蛋白质的兼职问题,而且还增加了我们对细胞中不同功能类之间相互作用的理解。在本文中,我们回顾了基于网络的功能预测的最新进展,并描述了一些潜在的困难和成功。鉴于正在报告的高通量数据量,现在是时候采用这些基于网络的方法了,这些方法可以用于揭示基因组数据库中积累的未表征蛋白质的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验