Suppr超能文献

使用随机梯度下降对离散观测的随机动力学模型进行参数推断。

Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.

作者信息

Wang Yuanfeng, Christley Scott, Mjolsness Eric, Xie Xiaohui

机构信息

Department of Physics and Astronomy, University of California, Irvine, 92617, USA.

出版信息

BMC Syst Biol. 2010 Jul 21;4:99. doi: 10.1186/1752-0509-4-99.

Abstract

BACKGROUND

Stochastic effects can be important for the behavior of processes involving small population numbers, so the study of stochastic models has become an important topic in the burgeoning field of computational systems biology. However analysis techniques for stochastic models have tended to lag behind their deterministic cousins due to the heavier computational demands of the statistical approaches for fitting the models to experimental data. There is a continuing need for more effective and efficient algorithms. In this article we focus on the parameter inference problem for stochastic kinetic models of biochemical reactions given discrete time-course observations of either some or all of the molecular species.

RESULTS

We propose an algorithm for inference of kinetic rate parameters based upon maximum likelihood using stochastic gradient descent (SGD). We derive a general formula for the gradient of the likelihood function given discrete time-course observations. The formula applies to any explicit functional form of the kinetic rate laws such as mass-action, Michaelis-Menten, etc. Our algorithm estimates the gradient of the likelihood function by reversible jump Markov chain Monte Carlo sampling (RJMCMC), and then gradient descent method is employed to obtain the maximum likelihood estimation of parameter values. Furthermore, we utilize flux balance analysis and show how to automatically construct reversible jump samplers for arbitrary biochemical reaction models. We provide RJMCMC sampling algorithms for both fully observed and partially observed time-course observation data. Our methods are illustrated with two examples: a birth-death model and an auto-regulatory gene network. We find good agreement of the inferred parameters with the actual parameters in both models.

CONCLUSIONS

The SGD method proposed in the paper presents a general framework of inferring parameters for stochastic kinetic models. The method is computationally efficient and is effective for both partially and fully observed systems. Automatic construction of reversible jump samplers and general formulation of the likelihood gradient function makes our method applicable to a wide range of stochastic models. Furthermore our derivations can be useful for other purposes such as using the gradient information for parametric sensitivity analysis or using the reversible jump samplers for full Bayesian inference. The software implementing the algorithms is publicly available at http://cbcl.ics.uci.edu/sgd.

摘要

背景

随机效应对于涉及小种群数量的过程行为可能很重要,因此随机模型的研究已成为新兴的计算系统生物学领域的一个重要课题。然而,由于将模型拟合到实验数据的统计方法计算量较大,随机模型的分析技术往往落后于其确定性模型。持续需要更有效和高效的算法。在本文中,我们关注给定部分或所有分子物种离散时间进程观测值的生化反应随机动力学模型的参数推断问题。

结果

我们提出一种基于随机梯度下降(SGD)的最大似然法来推断动力学速率参数的算法。我们推导了给定离散时间进程观测值时似然函数梯度的通用公式。该公式适用于动力学速率定律的任何显式函数形式,如质量作用定律、米氏方程等。我们的算法通过可逆跳跃马尔可夫链蒙特卡罗采样(RJMCMC)估计似然函数的梯度,然后采用梯度下降法获得参数值的最大似然估计。此外,我们利用通量平衡分析并展示如何为任意生化反应模型自动构建可逆跳跃采样器。我们为完全观测和部分观测的时间进程观测数据提供了RJMCMC采样算法。我们用两个例子说明了我们的方法:一个生死模型和一个自调控基因网络。我们发现两个模型中推断出的参数与实际参数吻合良好。

结论

本文提出的SGD方法为随机动力学模型的参数推断提供了一个通用框架。该方法计算效率高,对部分观测和完全观测系统均有效。可逆跳跃采样器的自动构建和似然梯度函数的通用公式使我们的方法适用于广泛的随机模型。此外,我们的推导可用于其他目的,如将梯度信息用于参数敏感性分析或使用可逆跳跃采样器进行全贝叶斯推断。实现这些算法的软件可在http://cbcl.ics.uci.edu/sgd上公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验